ﻻ يوجد ملخص باللغة العربية
Using molecular dynamics simulation, we calculate the distribution of atomic jum ps in Cu$_{33}$Zr$_{67}$ in the liquid and glassy states. In both states the distribution of jump lengths can be described by a temperature independent exponential of the length and an effective activation energy plus a contribution of elastic displacements at short distances. Upon cooling the contribution of shorter jumps dominates. No indication of an enhanced probability to jump over a nearest neighbor distance was found. We find a smooth transition from flow in the liquid to jumps in the g lass. The correlation factor of the diffusion constant decreases with decreasing temperature, causing a drop of diffusion below the Arrhenius value, despite an apparent Arrhenius law for the jump probability.
The Raman response of the metallic glass Ni$_{67}$Zr$_{33}$ is measured as a function of polarization and temperature and analyzed theoretically. Unexpectedly, the intensity in the range up to 300wn increases upon cooling, which is counterintuitive w
We show that harmonic vibrations in amorphous silicon can be decomposed to transverse and longitudinal components in all frequency range even in the absence of the well defined wave vector ${bf q}$. For this purpose we define the transverse component
The motion of the structure determining components is highly collective, both in amorphous solids and in undercooled liquids. This has been deduced from experimental low temperature data in the tunneling regime as well as from the vanishing isotope e
The atomic structure of the supercooled liquid has often been discussed as a key source of glass formation in metals. The presence of icosahedrally-coordinated clusters and their tendency to form networks have been identified as one possible structur
In amorphous solids, a non-negligible part of thermal conductivity results from phonon scattering on the structural disorder. The conversion of acoustic energy into thermal energy is often measured by the Dynamical Structure Factor (DSF) thanks to in