ﻻ يوجد ملخص باللغة العربية
We show how a recent proposal to obtain the distribution of conductances in three dimensions (3D) from a generalized Fokker-Planck equation for the joint probability distribution of the transmission eigenvalues can be implemented for all strengths of disorder by numerically evaluating certain correlations of transfer matrices. We then use this method to obtain analytically, for the first time, the 3D conductance distribution in the insulating regime and provide a simple understanding of why it differs qualitatively from the log-normal distribution of a quasi one-dimensional wire.
The combination of strong disorder and many-body interactions in Anderson insulators lead to a variety of intriguing non-equilibrium transport phenomena. These include slow relaxation and a variety of memory effects characteristic of glasses. Here we
We study disorder effects in a two-dimensional system with chiral symmetry and find that disorder can induce a quadrupole topological insulating phase (a higher-order topological phase with quadrupole moments) from a topologically trivial phase. Thei
The disorder effects on higher-order topological phases in periodic systems have attracted much attention. However, in aperiodic systems such as quasicrystalline systems, the interplay between disorder and higher-order topology is still unclear. In t
We report observations of the Coulomb drag effect between two effectively 2-d insulating a-Si_{1-x}Nb_{x} films. We find that there only exist a limited range of experimental parameters over which we can measure a sizable linear-response transresisti
We investigate the Hall conductance of a two-dimensional Chern insulator coupled to an environment causing gain and loss. Introducing a biorthogonal linear response theory, we show that sufficiently strong gain and loss lead to a characteristic non-a