ﻻ يوجد ملخص باللغة العربية
We study disorder effects in a two-dimensional system with chiral symmetry and find that disorder can induce a quadrupole topological insulating phase (a higher-order topological phase with quadrupole moments) from a topologically trivial phase. Their topological properties manifest in a topological invariant defined based on effective boundary Hamiltonians, the quadrupole moment, and zero-energy corner modes. We find gapped and gapless topological phases and a Griffiths regime. In the gapless topological phase, all the states are localized, while in the Griffiths regime, the states at zero energy become multifractal. We further apply the self-consistent Born approximation to show that the induced topological phase arises from disorder renormalized masses. We finally introduce a practical experimental scheme with topoelectrical circuits where the predicted topological phenomena can be observed by impedance measurements. Our work opens the door to studying higher-order topological Anderson insulators and their localization properties.
Recently, a new family of symmetry-protected higher-order topological insulators has been proposed and was shown to host lower-dimensional boundary states. However, with the existence of the strong disorder in the bulk, the crystal symmetry is broken
The disorder effects on higher-order topological phases in periodic systems have attracted much attention. However, in aperiodic systems such as quasicrystalline systems, the interplay between disorder and higher-order topology is still unclear. In t
Three-dimensional topological (crystalline) insulators are materials with an insulating bulk, but conducting surface states which are topologically protected by time-reversal (or spatial) symmetries. Here, we extend the notion of three-dimensional to
Pursuing topological phase and matter in a variety of systems is one central issue in current physical sciences and engineering. Motivated by the recent experimental observation of corner states in acoustic and photonic structures, we theoretically s
Conventional topological insulators support boundary states that have one dimension lower than the bulk system that hosts them, and these states are topologically protected due to quantized bulk dipole moments. Recently, higher-order topological insu