ﻻ يوجد ملخص باللغة العربية
We investigate the Hall conductance of a two-dimensional Chern insulator coupled to an environment causing gain and loss. Introducing a biorthogonal linear response theory, we show that sufficiently strong gain and loss lead to a characteristic non-analytical contribution to the Hall conductance. Near its onset, this contribution exhibits a universal power-law with a power 3/2 as a function of Dirac mass, chemical potential and gain strength. Our results pave the way for the study of non-Hermitian topology in electronic transport experiments.
The interplay between non-Hermiticity and topology opens an exciting avenue for engineering novel topological matter with unprecedented properties. While previous studies have mainly focused on one-dimensional systems or Chern insulators, here we inv
The quantum anomalous Hall (QAH) state is a two-dimensional topological insulating state that has quantized Hall resistance of h/Ce2 and vanishing longitudinal resistance under zero magnetic field, where C is called the Chern number. The QAH effect h
Eigenenergies of a non-Hermitian system without parity-time symmetry are complex in general. Here, we show that the chiral boundary states of non-Hermitian topological insulators without parity-time symmetry can be Hermitian with real eigenenergies u
We propose a two-dimensional non-Hermitian Chern insulator with inversion symmetry, which is anisotropic and has staggered gain and loss in both x and y directions. In this system, conventional bulk-boundary correspondence holds. The Chern number is
Recent studies of disorder or non-Hermiticity induced topological insulators inject new ingredients for engineering topological matter. Here we consider the effect of purely non-Hermitian disorders, a combination of these two ingredients, in a 1D chi