ترغب بنشر مسار تعليمي؟ اضغط هنا

Hydrogen-Storing Salt NaCl(H$_2$) Synthesized at High Pressure and High Temperature

76   0   0.0 ( 0 )
 نشر من قبل Takahiro Matsuoka
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

X-ray diffraction and Raman scattering measurements, and first-principles calculations are performed to search for the formation of NaCl-hydrogen compound. When NaCl and H$_{2}$ mixture is laser-heated to above 1500 K at pressures exceeding 40 GPa, we observed the formation of NaClH$_{textit{x}}$ with $textit{P}$6$_{3}$/$textit{mmc}$ structure which accommodates H$_{2}$ molecules in the interstitial sites of NaCl lattice forming ABAC stacking. Upon the decrease of pressure at 300 K, NaClH$_textit{x}$ remains stable down to 17 GPa. Our calculations suggest the observed NaClH$_{textit{x}}$ is NaCl(H$_{2}$). Besides, a hydrogen-richer phase NaCl(H$_{2}$)$_{4}$ is predicted to become stable at pressures above 40 GPa.



قيم البحث

اقرأ أيضاً

Theoretical predictions of pressure-induced phase transformations often become long-standing enigmas because of limitations of contemporary available experimental possibilities. Hitherto the existence of a non-icosahedral boron allotrope has been one of them. Here we report on the first non-icosahedral boron allotrope, which we denoted as {zeta}-B, with the orthorhombic {alpha}-Ga-type structure (space group Cmce) synthesized in a diamond anvil cell at extreme high-pressure high-temperature conditions (115 GPa and 2100 K). The structure of {zeta}-B was solved using single-crystal synchrotron X-ray diffraction and its compressional behavior was studied in the range of very high pressures (115 GPa to 135 GPa). Experimental validation of theoretical predictions reveals the degree of our up-to-date comprehension of condensed matter and promotes further development of the solid state physics and chemistry.
The energy landscape of helium-nitrogen mixtures is explored by ab initio evolutionary searches, which predicted several stable helium-nitrogen compounds in the pressure range from 25 to 100 GPa. In particular, the monoclinic structure of HeN$_{22}$ consists of neutral He atoms, partially ionic dimers N$_{2}$$^{delta-}$, and lantern-like cages N$_{20}$$^{delta+}$. The presence of helium not only greatly enhances structural diversity of nitrogen solids, but also tremendously lowers the formation pressure of nitrogen salt. The unique nitrogen framework of (HeN$_{20}$)$^{delta+}$N$_{2}$$^{delta-}$ may be quenchable to ambient pressure even after removing helium. The estimated energy density of N$_{20}$$^{delta+}$N$_{2}$$^{delta-}$ (10.44 kJ/g) is $sim$2.4 times larger than that of trinitrotoluene (TNT), indicating a very promising high-energy-density material.
125 - Sam Azadi , , Thomas D. Kuhne 2016
We use the diffusion quantum Monte Carlo to revisit the enthalpy-pressure phase diagram of the various products from the different proposed decompositions of H$_2$S at pressures above 150~GPa. Our results entails a revision of the ground-state enthal py-pressure phase diagram. Specifically, we find that the C2/c HS$_2$ structure is persistent up to 440~GPa before undergoing a phase transition into the C2/m phase. Contrary to density functional theory, our calculations suggest that the C2/m phase of HS is more stable than the I4$_1$/amd HS structure over the whole pressure range from 150 to 400 GPa. Moreover, we predict that the Im-3m phase is the most likely candidate for H$_3$S, which is consistent with recent experimental x-ray diffraction measurements.
We investigate the van der Waals interactions in solid molecular hydrogen structures. We calculate enthalpy and the Gibbs free energy to obtain zero and finite temperature phase diagrams, respectively. We employ density functional theory (DFT) to cal culate the electronic structure and Density functional perturbation theory (DFPT) with van der Waals (vdW) functionals to obtain phonon spectra. We focus on the solid molecular $C2/c$, $Cmca$-12, $P6_3/m$, $Cmca$, and $Pbcn$ structures within the pressure range of 200 $<$ P $<$ 450 GPa. We propose two structures of the $C2/c$ and $Pbcn$ for phase III which are stabilized within different pressure range above 200 GPa. We find that vdW functionals have a big effect on vibrations and finite-temperature phase stability, however, different vdW functionals have different effects. We conclude that, in addition to the vdW interaction, a correct treatment of the high charge gradient limit is essential. We show that the dependence of molecular bond-lengths on exchange-correlation also has a considerable influence on the calculated metallization pressure, introducing errors of up to 100GPa.
The crystal structure of CO2 filled pure SiO2 LTA zeolite has been studied at high pressures and temperatures using synchrotron based x ray powder diffraction. Its structure consists of 13 CO2 guest molecules, 12 of them accommodated in the large alp ha cages and 1 in the beta cages, giving a SiO2:CO2 stoichiometric ratio smaller than 2. The structure remains stable under pressure up to 20 GPa with a slight pressure dependent rhombohedral distortion, indicating that pressure induced amorphization is prevented by the insertion of guest species in this open framework. The ambient-temperature lattice compressibility has been determined. In situ high pressure resistive heating experiments up to 750 K allow us to estimate the thermal expansivity at 5 GPa. Our data confirm that the insertion of CO2 reverses the negative thermal expansion of the empty zeolite structure. No evidence of any chemical reaction was observed. The possibility of synthesizing a silicon carbonate at high temperatures and higher pressures is discussed in terms of the evolution of C-O and Si-O distances between molecular and framework atoms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا