ﻻ يوجد ملخص باللغة العربية
MnAs films grown on GaAs (001) exhibit a progressive transition between hexagonal (ferromagnetic) and orthorhombic (paramagnetic) phases at wide temperature range instead of abrupt transition during the first-order phase transition. The coexistence of two phases is favored by the anisotropic strain arising from the constraint on the MnAs films imposed by the substrate. This phase coexistence occurs in ordered arrangement alternating periodic terrace steps. We present here a method to study the surface morphology throughout this transition by means of specular and diffuse scattering of soft x-rays, tuning the photon energy at the Mn 2p resonance. The results show the long-range arrangement of the periodic stripe-like structure during the phase coexistence and its period remains constant, in agreement with previous results using other techniques.
We demonstrate a scheme for optically patterning nuclear spin polarization in semiconductor/ferromagnet heterostructures. A scanning time-resolved Kerr rotation microscope is used to image the nuclear spin polarization that results when GaAs/MnAs epi
We have studied the electronic structure of hexagonal MnAs, as epitaxial continuous film on GaAs(001) and as nanocrystals embedded in GaAs, by Mn 2p core-level photoemission spectroscopy. Configuration-interaction analyses based on a cluster model sh
We have performed a depth profile study of thermally diffused Mn/GaAs (001) interfaces using photoemission spectroscopy combined with Ar$^+$-ion sputtering. We found that Mn ion was thermally diffused into the deep region of the GaAs substrate and co
The use of current-generated spin-orbit torques[1] to drive magnetization dynamics is under investigation to enable a new generation of non-volatile, low-power magnetic memory. Previous research has focused on spin-orbit torques generated by heavy me
In underdoped cuprate superconductors, a rich competition occurs between superconductivity and charge density wave (CDW) order. Whether rotational symmetry breaking (nematicity) occurs intrinsically and generically or as a consequence of other orders