ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced electron correlations, local moments, and Curie temperature in strained MnAs nanocrystals embedded in GaAs

198   0   0.0 ( 0 )
 نشر من قبل Maria Moreno
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied the electronic structure of hexagonal MnAs, as epitaxial continuous film on GaAs(001) and as nanocrystals embedded in GaAs, by Mn 2p core-level photoemission spectroscopy. Configuration-interaction analyses based on a cluster model show that the ground state of the embedded MnAs nanocrystals is dominated by a d5 configuration that maximizes the local Mn moment. Nanoscaling and strain significantly alter the properties of MnAs. Internal strain in the nanocrystals results in reduced p-d hybridization and enhanced ionic character of the Mn-As bonding interactions. The spatial confinement and reduced p-d hybridization in the nanocrystals lead to enhanced d-electron localization, triggering d-d electron correlations and enhancing local Mn moments. These changes in the electronic structure of MnAs have an advantageous effect on the Curie temperature of the nanocrystals, which is measured to be remarkably higher than that of bulk MnAs.



قيم البحث

اقرأ أيضاً

We demonstrate a scheme for optically patterning nuclear spin polarization in semiconductor/ferromagnet heterostructures. A scanning time-resolved Kerr rotation microscope is used to image the nuclear spin polarization that results when GaAs/MnAs epi layers are illuminated with a focused laser having a Gaussian profile. Rather than tracking the intensity profile of the laser spot, these images reveal that the nuclear polarization forms an annular lateral structure having circular symmetry with a dip rather than a peak at its center.
We address local inelastic scattering from vibrational impurity adsorbed onto graphene and the evolution of the local density of electron states near the impurity from weak to strong coupling regime. For weak coupling the local electronic structure i s distorted by inelastic scattering developing peaks/dips and steps. These features should be detectable in the inelastic electron tunneling spectroscopy, $d^2I/dV^2$, using local probing techniques. Inelastic Friedel oscillations distort the spectral density at energies close to the inelastic mode. In the strong coupling limit, a local negative $U$-center forms in the atoms surrounding the impurity site. For those atoms, the Dirac cone structure is fully destroyed, that is, the linear energy dispersion as well as the V-shaped local density of electron states is completely destroyed. We further consider the effects of the negative $U$ formation and its evolution from weak to strong coupling. The negative $U$-site effectively acts as local impurity such that sharp resonances appear in the local electronic structure. The main resonances are caused by elastic scattering off the impurity site, and the features are dressed by the presence of vibrationally activated side resonances. Going from weak to strong coupling, changes the local electronic structure from being Dirac cone like including midgap states, to a fully destroyed Dirac cone with only the impurity resonances remaining.
The tensile strain is a promising tool for creation and manipulation of magnetic solitonic textures in the chiral helimagnets via tunable control of magnetic anisotropy and Dzyaloshinskii-Moriya interaction. Here, by using the in-situ resonant small- angle x-ray scattering we demonstrate that the skyrmion and chiral soliton lattices can be achieved as metastable states in FeGe lamella as distinct states or even simultaneously by combining the tensile strain and magnetic fields in various orientations with respect to the deformation. The small-angle scattering data are discussed in the frame of the analytical model which is sufficient to describe the experimental results for soliton lattice. By using the experimental results and analytical theory, unwinding of the metastable skyrmions in the perpendicular magnetic field as seen by small-angle scattering experiment was analyzed by the micromagnetic simulation.
The paper presents a theoretical description of the effects of strain induced by out-of-plane deformations on charge distributions and transport on graphene. A review of a continuum model for electrons using the Dirac formalism is complemented with e lasticity theory to represent strain fields. The resulting model is cast in terms of scalar and pseudo-magnetic fields that control electron dynamics. Two distinct geometries, a bubble, and a fold are chosen to represent the most commonly observed deformations in experimental settings. It is shown that local charge accumulation regions appear in deformed areas, with a peculiar charge distribution that favors the occupation of one sublattice only. This unique phenomenon that allows distinguishing each carbon atom in the unit cell, is the manifestation of a sublattice symmetry broken phase. For specific parameters, resonant states appear in localized charged regions, as shown by the emergence of discrete levels in band structure calculations. These findings are presented in terms of intuitive pictures that exploit analogies with confinement produced by square barriers. In addition, electron currents through strained regions are spatially separated into their valley components, making possible the manipulation of electrons with different valley indices. The degree of valley filtering (or polarization) for a specific system can be controlled by properly designing the strained area. The comparison between efficiencies of filters built with this type of geometries identifies extended deformations as better valley filters. A proposal for their experimental implementations as a component of devices and a discussion for potential observation of novel physics in strained structures are presented at the end of the article.
MnAs films grown on GaAs (001) exhibit a progressive transition between hexagonal (ferromagnetic) and orthorhombic (paramagnetic) phases at wide temperature range instead of abrupt transition during the first-order phase transition. The coexistence o f two phases is favored by the anisotropic strain arising from the constraint on the MnAs films imposed by the substrate. This phase coexistence occurs in ordered arrangement alternating periodic terrace steps. We present here a method to study the surface morphology throughout this transition by means of specular and diffuse scattering of soft x-rays, tuning the photon energy at the Mn 2p resonance. The results show the long-range arrangement of the periodic stripe-like structure during the phase coexistence and its period remains constant, in agreement with previous results using other techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا