ﻻ يوجد ملخص باللغة العربية
We studied the exchange coupling and decoupling occurring in a nanocomposite spin system based on a 3D Heisenberg model by means of Monte Carlo numerical computation simulation. Different from conventional micromagnetism approach which usually adopts finite elements method to compute, in a top-down way, the magnetic property of micromagnetic ensemble in micron even nanometer scale, our approach in this paper is peculiar to the structure of a complex spin lattice, i.e. two species of spins building up from single spin to cluster spins in a bottom-up way. The simulation revealed the influence of exchange coupling constant Jab, the size of cluster spins d and system reduced temperature t upon the exchange coupling and decoupling between component spin phases of a nanocomposite magnets, respectively. Smaller value of Jab, larger d and lower temperature t usually lead to the decoupling of originally exchange-coupled component phases and the occurrence of a characteristic two-stage shoulder with an inflexion on the demagnetization curve. The results reported in this paper are of, to some extent, universality and applicable to other dual-phase magnetic systems since our simulation simply focus on a pure duplex spin system rather than a specific material and all physical variables were treated in a reduced form.
The magneto-transport properties of nanocomposite C:Co (15 and 40 at.% Co) thin films are investigated. The films were grown by ion beam co-sputtering on thermally oxidized silicon substrates in the temperature range from 200 to 500 degC. Two major e
Heterostructures composed of ferromagnetic layers that are mutually interacting through a nonmagnetic spacer are at the core of magnetic sensor and memory devices. In the present study, layer-resolved ferromagnetic resonance was used to investigate t
We compute the temperature-dependent spin-wave spectrum and the magnetization for a spin system using the unified decoupling procedure for the high-order Greens functions for the exchange coupling and anisotropy, both in the classical and quantum cas
The coupling between ferroelectric and magnetic orders in multiferroic materials and the nature of magnetoelectric (ME) effects are enduring experimental challenges. In this work, we have studied the response of magnetization to ferroelectric switchi
In conventional exchange-bias system comprising of a bilayer film of ferromagnet (FM) and antiferromagnet (AFM), investigating the role of spin-disorder and spin-frustration inside the AFM and at the interface has been crucial in understanding the fu