ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin-dependent transport in nanocomposite C:Co films

68   0   0.0 ( 0 )
 نشر من قبل Shengqiang Zhou
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magneto-transport properties of nanocomposite C:Co (15 and 40 at.% Co) thin films are investigated. The films were grown by ion beam co-sputtering on thermally oxidized silicon substrates in the temperature range from 200 to 500 degC. Two major effects are reported: (i) a large anomalous Hall effect amounting to 2 mu ohm cm, and (ii) a negative magnetoresistance. Both the field-dependent resistivity and Hall resistivity curves coincide with the rescaled magnetization curves, a finding that is consistent with spin-dependent transport. These findings suggest that C:Co nanocomposites are promising candidates for carbon-based Hall sensors and spintronic devices.

قيم البحث

اقرأ أيضاً

The spin relaxation induced by the Elliott-Yafet mechanism and the extrinsic spin Hall conductivity due to the skew-scattering are investigated in 5d transition-metal ultrathin films with self-adatom impurities as scatterers. The values of the Elliot t-Yafet parameter and of the spin-flip relaxation rate reveal a correlation with each other that is in agreement with the Elliott approximation. At 10-layer thickness, the spin-flip relaxation time in 5d transition-metal films is quantitatively reported about few hundred nanoseconds at atomic percent which is one and two orders of magnitude shorter than that in Au and Cu thin films, respectively. The anisotropy effect of the Elliott-Yafet parameter and of the spin-flip relaxation rate with respect to the direction of the spin-quantization axis in relation to the crystallographic axes is also analyzed. We find that the anisotropy of the spin-flip relaxation rate is enhanced due to the Rashba surface states on the Fermi surface, reaching values as high as 97% in 10-layer Hf(0001) film or 71% in 10-layer W(110) film. Finally, the spin Hall conductivity as well as the spin Hall angle due to the skew-scattering off self-adatom impurities are calculated using the Boltzmann approach. Our calculations employ a relativistic version of the first-principles full-potential Korringa-Kohn-Rostoker Green function method.
57 - Y. Z. Shao , W. R. Zhong , T. Lan 2004
We studied the exchange coupling and decoupling occurring in a nanocomposite spin system based on a 3D Heisenberg model by means of Monte Carlo numerical computation simulation. Different from conventional micromagnetism approach which usually adopts finite elements method to compute, in a top-down way, the magnetic property of micromagnetic ensemble in micron even nanometer scale, our approach in this paper is peculiar to the structure of a complex spin lattice, i.e. two species of spins building up from single spin to cluster spins in a bottom-up way. The simulation revealed the influence of exchange coupling constant Jab, the size of cluster spins d and system reduced temperature t upon the exchange coupling and decoupling between component spin phases of a nanocomposite magnets, respectively. Smaller value of Jab, larger d and lower temperature t usually lead to the decoupling of originally exchange-coupled component phases and the occurrence of a characteristic two-stage shoulder with an inflexion on the demagnetization curve. The results reported in this paper are of, to some extent, universality and applicable to other dual-phase magnetic systems since our simulation simply focus on a pure duplex spin system rather than a specific material and all physical variables were treated in a reduced form.
The recent observation of Weyl fermions in the itinerant 4d ferromagnetic perovskite SrRuO3 points to this material being a good platform for exploring novel physics related to a pair of Weyl nodes in epitaxial heterostructures. In this letter, we re port the thickness-dependent magnetotransport properties of ultra-high-quality epitaxial SrRuO3 films grown under optimized conditions on SrTiO3 substrates. Signatures of Weyl fermion transport, i.e., unsaturated linear positive magnetoresistance accompanied by a quantum oscillation having a {pi} Berry phase, were observed in films with thicknesses as small as 10 nm. Residual resistivity increased with decreasing film thickness, indicating disorder near the interface between SrRuO3 and the SrTiO3 substrate. Since this disorder affects the magnetic and electrical properties of the films, the Curie temperature decreases and the coercive field increases with decreasing thickness. Thickness-dependent magnetotransport measurements revealed that the threshold residual resistivity ratio (RRR) to observe Weyl fermion transport is 21. These results provide guidelines for realizing quantum transport of Weyl fermions in SrRuO3 near heterointerfaces.
We report a correlation between the spin polarization of the tunneling electrons (TSP) and the magnetic moment of amorphous CoFeB alloys. Such a correlation is surprising since the TSP involves s-like electrons close to the Fermi level (EF), while th e magnetic moment mainly arises due to all d-electrons below EF. We show that probing the s and d-bands individually provides clear and crucial evidence for such a correlation to exist through s-d hybridization, and demonstrate the tuneability of the electronic and magnetic properties of CoFeB alloys.
The combination of ferromagnetism and semiconducting behavior offers an avenue for realizing novel spintronics and spin-enhanced thermoelectrics. Here we demonstrate the synthesis of doped and nanocomposite half Heusler Fe$_{1+x}$VSb films by molecul ar beam epitaxy. For dilute excess Fe ($x < 0.1$), we observe a decrease in the Hall electron concentration and no secondary phases in X-ray diffraction, consistent with Fe doping into FeVSb. Magnetotransport measurements suggest weak ferromagnetism that onsets at a temperature of $T_{c} approx$ 5K. For higher Fe content ($x > 0.1$), ferromagnetic Fe nanostructures precipitate from the semiconducting FeVSb matrix. The Fe/FeVSb interfaces are epitaxial, as observed by transmission electron microscopy and X-ray diffraction. Magnetotransport measurements suggest proximity-induced magnetism in the FeVSb, from the Fe/FeVSb interfaces, at an onset temperature of $T_{c} approx$ 20K.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا