ﻻ يوجد ملخص باللغة العربية
We compute the temperature-dependent spin-wave spectrum and the magnetization for a spin system using the unified decoupling procedure for the high-order Greens functions for the exchange coupling and anisotropy, both in the classical and quantum case. Our approach allows us to establish a clear crossover between quantum-mechanical and classical methods by developing the classical analog of the quantum Greens function technique. The results are compared with the classical spectral density method and numerical modeling based on the stochastic Landau-Lifshitz equation and the Monte Carlo technique. As far as the critical temperature is concerned, there is a full agreement between the classical Greens functions technique and the classical spectral density method. However, the former method turns out to be more straightforward and more convenient than the latter because it avoids any emph{a priori} assumptions about the systems spectral density. The temperature-dependent exchange stiffness as a function of magnetization is investigated within different approaches.
It is virtually impossible to evaluate the magnetic properties of large anisotropic magnetic molecules numerically exactly due to the huge Hilbert space dimensions as well as due to the absence of symmetries. Here we propose to advance the Finite-Tem
We studied the exchange coupling and decoupling occurring in a nanocomposite spin system based on a 3D Heisenberg model by means of Monte Carlo numerical computation simulation. Different from conventional micromagnetism approach which usually adopts
The magneto-crystalline anisotropy (MCA) of (Ga,Mn)As films has been studied on the basis of ab-initio electronic structure theory by performing magnetic torque calculations. An appreciable contribution to the in-plane uniaxial anisotropy can be attr
Dynamical potentials appear in many advanced electronic-structure methods, including self-energies from many-body perturbation theory, dynamical mean-field theory, electronic-transport formulations, and many embedding approaches. Here, we propose a n
We report measurements of magnon spin transport in a spinel ferrite, magnesium aluminum ferrite $mathrm{MgAl_{0.5}Fe_{1.5}O_4}$ (MAFO), which has a substantial in-plane four-fold magnetic anisotropy. We observe spin diffusion lengths $> 0.8$ $mathrm{