ﻻ يوجد ملخص باللغة العربية
Searching for characteristic signatures of a higher order phase transition (specifically of order three or four), we have calculated the spatial profiles and the energies of a spatially varying order parameter in one dimension. In the case of a $p^{th}$ order phase transition to a superconducting ground state, the free energy density depends on temperature as $a^p$, where $a = a_o(1-T/T_c)$ is the reduced temperature. The energy of a domain wall between two degenerate ground states is $epsilon_p simeq a^{p-1/2}$. We have also investigated the effects of a supercurrent in a narrow wire. These effects are limited by a critical current which has a temperature dependence $J_c(T) simeq a^{(2p-1)/2}$. The phase slip center profiles and their energies are also calculated. Given the suggestion that the superconducting transtion in bkbox, for $x = 0.4$, may be of order four, these predictions have relevance for future experiments.
In this paper we investigate bubble nucleation in a disordered Landau-Ginzburg model. First we adopt the standard procedure to average over the disordered free energy. This quantity is represented as a series of the replica partition functions of the
In this paper we show how, under certain restrictions, the hydrodynamic equations for the freely evolving granular fluid fit within the framework of the time dependent Landau-Ginzburg (LG) models for critical and unstable fluids (e.g. spinodal decomp
Under holographic prescription for Schwinger-Keldysh closed time contour for non-equilibrium system, we consider fluctuation effect of the order parameter in a holographic superconductor model. Near the critical point, we derive the time-dependent Gi
We present numerical studies of the dynamics of vortices in the Ginzburg Landau model using equations derived from the gradient flow of the free energy. These equations have previously been proposed to describe the dynamics of n-vortices away from eq
We discuss a disordered $lambdavarphi^{4}+rhovarphi^{6}$ Landau-Ginzburg model defined in a d-dimensional space. First we adopt the standard procedure of averaging the disorder dependent free energy of the model. The dominant contribution to this qua