ﻻ يوجد ملخص باللغة العربية
We present numerical studies of the dynamics of vortices in the Ginzburg Landau model using equations derived from the gradient flow of the free energy. These equations have previously been proposed to describe the dynamics of n-vortices away from equilibrium. We are able to model the dynamics of multiple n-vortex configurations starting far from equilibrium. We find generically that there are two time scales for equilibration: a short time scale related to the formation time for a single n-vortex, and a longer time scale that characterizes vortex-vortex interactions.
Under holographic prescription for Schwinger-Keldysh closed time contour for non-equilibrium system, we consider fluctuation effect of the order parameter in a holographic superconductor model. Near the critical point, we derive the time-dependent Gi
We apply Ginzburg-Landau theory to determine BCS pairing in a strongly-coupled uniform superfluid of three-flavor massless quarks in flavor equilibrium. We elucidate the phase diagram near the critical temperature in the space of the parameters chara
Searching for characteristic signatures of a higher order phase transition (specifically of order three or four), we have calculated the spatial profiles and the energies of a spatially varying order parameter in one dimension. In the case of a $p^{t
We study the time-dependent Ginzburg--Landau equations in a three-dimensional curved polyhedron (possibly nonconvex). Compared with the previous works, we prove existence and uniqueness of a global weak solution based on weaker regularity of the solu
In this paper we study the low energy physics of Landau-Ginzburg models with N=(0,2) supersymmetry. We exhibit a number of classes of relatively simple LG models where the conformal field theory at the low energy fixed point can be explicitly identif