ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic susceptibility, exchange interactions and spin-wave spectra in the local spin density approximation

79   0   0.0 ( 0 )
 نشر من قبل A. Lichtenstein
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Starting from exact expression for the dynamical spin susceptibility in the time-dependent density functional theory a controversial issue about exchange interaction parameters and spin-wave excitation spectra of itinerant electron ferromagnets is reconsidered. It is shown that the original expressions for exchange integrals based on the magnetic force theorem (J. Phys. F14 L125 (1984)) are optimal for the calculations of the magnon spectrum whereas static response function is better described by the ``renormalized magnetic force theorem by P. Bruno (Phys. Rev. Lett. 90, 087205 (2003)). This conclusion is confirmed by the {it ab initio} calculations for Fe and Ni.

قيم البحث

اقرأ أيضاً

We present the results of an LDA and LDA+U band structure study of the monoclinic and the corundum phases of V2O3 and argue that the most prominent (spin 1/2) models used to describe the semiconductor metal transition are not valid. Contrary to the g enerally accepted assumptions we find that the large on site Coulomb and exchange interactions result in a total local spin of 1 rather than 1/2 and especially an orbital occupation which removes the orbital degeneracies and the freedom for orbital ordering. The calculated exchange interaction parameters lead to a magnetic structure consistent with experiment again without the need of orbital ordering. While the low-temperature monoclinic distortion of the corundum crystal structure produces a very small effect on electronic structure of v2o3, the change of magnetic order leads to drastic differences in band widths and band gaps. The low temperature monoclinic phase clearly favors the experimentally observed magnetic structure, but calculations for corundum crystal structure gave two consistent sets of exchange interaction parameters with nearly degenerate total energies suggesting a kind of frustration in the paramagnetic phase. These results strongly suggest that the phase transitions in V2O3 which is so often quoted as the example of a S=1/2 Mott Hubbard system have a different origin. So back to the drawing board!
In spin-density-functional theory for noncollinear magnetic materials, the Kohn-Sham system features exchange-correlation (xc) scalar potentials and magnetic fields. The significance of the xc magnetic fields is not very well explored; in particular, they can give rise to local torques on the magnetization, which are absent in standard local and semilocal approximations. We obtain exact benchmark solutions for two electrons on four-site extended Hubbard lattices over a wide range of interaction strengths, and compare exact xc potentials and magnetic fields with approximations obtained from orbital-dependent xc functionals. The xc magnetic fields turn out to play an increasingly important role as systems becomes more and more correlated and the electrons begin to localize; the effects of the xc torques, however, remain relatively minor. The approximate xc functionals perform overall quite well, but tend to favor symmetry-broken solutions for strong interactions.
We consider the mapping of tight-binding electronic structure theory to a local spin Hamiltonian, based on the adiabatic approximation for spin degrees of freedom in itinerant-electron systems. Local spin Hamiltonians are introduced in order to descr ibe the energy landscape of small magnetic fluctuations, locally around a given spin configuration. They are designed for linear response near a given magnetic state and in general insufficient to capture arbitrarily strong deviations of spin configurations from the equilibrium. In order to achieve this mapping, we include a linear term in the local spin Hamiltonian that, together with the usual bilinear exchange tensor, produces an improved accuracy of effective magnetic Weiss fields for non-collinear states. We also provide examples from tight-binding electronic structure theory, where our implementation of the calculation of exchange constants is based on constraining fields that stabilize an out-of-equilibrium spin configuration. We check our formalism by means of numerical calculations for iron dimers and chains.
Materials that exhibit both strong spin orbit coupling and electron correlation effects are predicted to host numerous new electronic states. One prominent example is the Jeff =1/2 Mott state in Sr2IrO4, where introducing carriers is predicted to man ifest high temperature superconductivity analogous to the S=1/2 Mott state of La2CuO4. While bulk superconductivity currently remains elusive, anomalous quasi-particle behaviors paralleling those in the cuprates such as pseudogap formation and the formation of a d-wave gap are observed upon electron-doping Sr2IrO4. Here we establish a magnetic parallel between electron-doped Sr2IrO4 and hole-doped La2CuO4 by unveiling a spin density wave state in electron-doped Sr2IrO4. Our magnetic resonant x-ray scattering data reveal the presence of an incommensurate magnetic state reminiscent of the diagonal spin density wave state observed in the monolayer cuprate (La1-xSrx)2CuO4. This link supports the conjecture that the quenched Mott phases in electron-doped Sr2IrO4 and hole-doped La2CuO4 support common competing electronic phases.
We present a detailed study on the magnetic order in the undoped mother compound LaOFeAs of the recently discovered Fe-based superconductor LaO$_{1-x}$F$_x$FeAs. In particular, we present local probe measurements of the magnetic properties of LaOFeAs by means of $^{57}$Fe Mossbauer spectroscopy and muon spin relaxation in zero external field along with magnetization and resistivity studies. These experiments prove a commensurate static magnetic order with a strongly reduced ordered moment of 0.25(5) $mu_B$ at the iron site below T_N = 138 K, well separated from a structural phase transition at T_N = 156 K. The temperature dependence of the sublattice magnetization is determined and compared to theory. Using a four-band spin density wave model both, the size of the order parameter and the quick saturation below T_N are reproduced.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا