ﻻ يوجد ملخص باللغة العربية
We present a detailed study on the magnetic order in the undoped mother compound LaOFeAs of the recently discovered Fe-based superconductor LaO$_{1-x}$F$_x$FeAs. In particular, we present local probe measurements of the magnetic properties of LaOFeAs by means of $^{57}$Fe Mossbauer spectroscopy and muon spin relaxation in zero external field along with magnetization and resistivity studies. These experiments prove a commensurate static magnetic order with a strongly reduced ordered moment of 0.25(5) $mu_B$ at the iron site below T_N = 138 K, well separated from a structural phase transition at T_N = 156 K. The temperature dependence of the sublattice magnetization is determined and compared to theory. Using a four-band spin density wave model both, the size of the order parameter and the quick saturation below T_N are reproduced.
In order to identify the mechanism responsible for the formation of charge-density waves (CDW) in cuprate superconductors, it is important to understand which aspects of the CDWs microscopic structure are generic and which are material-dependent. Her
Coexistence of antiferromagnetic order with superconductivity in many families of newly discovered iron-based superconductors has renewed interest to this old problem. Due to competition between the two types of order, one can expect appearance of th
75As NMR measurements were performed as a function of temperature and doping in (Eu1-xKx)Fe2As2 (x=0,0.38,0.5,0.7) samples. The large Eu2+ moments and their fluctuations are found to dominate the 75As NMR properties. The 75As nuclei close to the Eu2+
We report an optical investigation on the in-plane charge dynamics for Na$_{1-delta}$FeAs single crystal. A clear optical evidence for the spin-density wave (SDW) gap is observed. As the structural/magnetic transitions are separated in the Na$_{1-del
This paper has been withdrawn by the authors due to errors in the X-ray diffraction data. Other measured data are not affected; however, the errors significantly change the interpretation and conclusions, and thus warrant withdrawal and later resubmission.