ﻻ يوجد ملخص باللغة العربية
Using general scaling arguments combined with mean-field theory we investigate the critical ($T simeq T_c$) and off-critical ($T e T_c$) behavior of the Casimir forces in fluid films of thickness $L$ governed by dispersion forces and exposed to long-ranged substrate potentials which are taken to be equal on both sides of the film. We study the resulting effective force acting on the confining substrates as a function of $T$ and of the chemical potential $mu$. We find that the total force is attractive both below and above $T_c$. If, however, the direct substrate-substrate contribution is subtracted, the force is repulsive everywhere except near the bulk critical point $(T_c,mu_c)$, where critical density fluctuations arise, or except at low temperatures and $(L/a) (betaDelta mu) =O(1)$, with $Delta mu=mu-mu_c <0$ and $a$ the characteristic distance between the molecules of the fluid, i.e., in the capillary condensation regime. While near the critical point the maximal amplitude of the attractive force if of order of $L^{-d}$ in the capillary condensation regime the force is much stronger with maximal amplitude decaying as $L^{-1}$. Essential deviations from the standard finite-size scaling behavior are observed within the finite-size critical region $L/xi=O(1)$ for films with thicknesses $L lesssim L_{rm crit}$, where $L_{rm crit}=xi_0^pm (16 |s|)^{ u/beta}$, with $ u$ and $beta$ as the standard bulk critical exponents and with $s=O(1)$ as the dimensionless parameter that characterizes the relative strength of the long-ranged tail of the substrate-fluid over the fluid-fluid interaction. We present the modified finite-size scaling pertinent for such a case and analyze in detail the finite-size behavior in this region.
We present a new Monte Carlo method to calculate Casimir forces acting on objects in a near-critical fluid, considering the two basic cases of a wall and a sphere embedded in a two-dimensional Ising medium. During the simulation, the objects are move
Effective Casimir forces induced by thermal fluctuations in the vicinity of bulk critical points are studied by means of Monte Carlo simulations in three-dimensional systems for film geometries and within the experimentally relevant Ising and XY univ
The critical Casimir force (CCF) arises from confining fluctuations in a critical fluid and thus it is a fluctuating quantity itself. While the mean CCF is universal, its (static) variance has previously been found to depend on the microscopic detail
The confinement of critical fluctuations in soft media induces critical Casimir forces acting on the confining surfaces. The temperature and geometry dependences of such forces are characterized by universal scaling functions. A novel approach is pre
The excess adsorption $Gamma $ in two-dimensional Ising strips $(infty times L)$ subject to identical boundary fields, at both one-dimensional surfaces decaying in the orthogonal direction $j$ as $-h_1j^{-p}$, is studied for various values of $p$ and