ﻻ يوجد ملخص باللغة العربية
We present an analytic description of the finite-temperature phase diagram of the Bose-Hubbard model, successfully describing the physics of cold bosonic atoms trapped in optical lattices and superlattices. Based on a standard statistical mechanics approach, we provide the exact expression for the boundary between the superfluid and the normal fluid by solving the self-consistency equations involved in the mean-field approximation to the Bose-Hubbard model. The zero-temperature limit of such result supplies an analytic expression for the Mott lobes of superlattices, characterized by a critical fractional filling.
We work out two different analytical methods for calculating the boundary of the Mott-insulator-superfluid (MI-SF) quantum phase transition for scalar bosons in cubic optical lattices of arbitrary dimension at zero temperature which improve upon the
This tutorial is a theoretical work, in which we study the physics of ultra-cold dipolar bosonic gases in optical lattices. Such gases consist of bosonic atoms or molecules that interact via dipolar forces, and that are cooled below the quantum degen
In this paper we study the superfluid-Mott-insulator phase transition of ultracold dilute gas of bosonic atoms in an optical lattice by means of Green function method and Bogliubov transformation as well. The superfluid- Mott-insulator phase transiti
We show how spin-orbit coupling and Berry phase can appear in two-dimensional optical lattices by coupling atoms internal degrees of freedom to radiation. The Rashba Hamiltonian, a standard description of spin-orbit coupling for two-dimensional elect
Quantum phases of ultracold bosons with repulsive interactions in lattices in the presence of quenched disorder are investigated. The disorder is assumed to be caused by the interaction of the bosons with impurity atoms having a large effective mass.