ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Phase Diagram of Bosons in Optical Lattices

195   0   0.0 ( 0 )
 نشر من قبل Axel Pelster
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We work out two different analytical methods for calculating the boundary of the Mott-insulator-superfluid (MI-SF) quantum phase transition for scalar bosons in cubic optical lattices of arbitrary dimension at zero temperature which improve upon the seminal mean-field result. The first one is a variational method, which is inspired by variational perturbation theory, whereas the second one is based on the field-theoretic concept of effective potential. Within both analytical approaches we achieve a considerable improvement of the location of the MI-SF quantum phase transition for the first Mott lobe in excellent agreement with recent numerical results from Quantum Monte-Carlo simulations in two and three dimensions. Thus, our analytical results for the whole quantum phase diagram can be regarded as being essentially exact for all practical purposes.



قيم البحث

اقرأ أيضاً

We present an analytic description of the finite-temperature phase diagram of the Bose-Hubbard model, successfully describing the physics of cold bosonic atoms trapped in optical lattices and superlattices. Based on a standard statistical mechanics a pproach, we provide the exact expression for the boundary between the superfluid and the normal fluid by solving the self-consistency equations involved in the mean-field approximation to the Bose-Hubbard model. The zero-temperature limit of such result supplies an analytic expression for the Mott lobes of superlattices, characterized by a critical fractional filling.
Systems of two coupled bosonic species are studied using Mean Field Theory and Quantum Monte Carlo. The phase diagram is characterized both based on the mobility of the particles (Mott insulating or superfluid) and whether or not the system is magnet ic (different populations for the two species). The phase diagram is shown to be population balanced for negative spin-dependent interactions, regardless of whether it is insulating or superfluid. For positive spin-dependent interactions, the superfluid phase is always polarized, the two populations are imbalanced. On the other hand, the Mott insulating phase with even commensurate filling has balanced populations while the odd commensurate filling Mott phase has balanced populations at very strong interaction and polarizes as the interaction gets weaker while still in the Mott phase.
In this paper we study the superfluid-Mott-insulator phase transition of ultracold dilute gas of bosonic atoms in an optical lattice by means of Green function method and Bogliubov transformation as well. The superfluid- Mott-insulator phase transiti on condition is determined by the energy-band structure with an obvious interpretation of the transition mechanism. Moreover the superfluid phase is explained explicitly from the energy spectrum derived in terms of Bogliubov approach.
We studied the superfluid-to-Mott insulator transition for bosonic hard spheres loaded in asymmetric three-dimensional optical lattices by means of diffusion Monte Carlo calculations. The onset of the transition was monitored through the change in th e chemical potential around the density corresponding to one particle per potential well. With this method, we were able to reproduce the results given in the literature for three-dimensional symmetric lattices and for systems whose asymmetry makes them equivalent to a set of quasi-one dimensional tubes. The location of the same transition for asymmetric systems akin to a stack of quasi-two dimensional lattices will be also given. Our results were checked against those given by a Bose-Hubbard model for similar arrangements.
162 - Thomas Vojta , J. A. Hoyos 2007
When a quantum many-particle system exists on a randomly diluted lattice, its intrinsic thermal and quantum fluctuations coexist with geometric fluctuations due to percolation. In this paper, we explore how the interplay of these fluctuations influen ces the phase transition at the percolation threshold. While it is well known that thermal fluctuations generically destroy long-range order on the critical percolation cluster, the effects of quantum fluctuations are more subtle. In diluted quantum magnets with and without dissipation, this leads to novel universality classes for the zero-temperature percolation quantum phase transition. Observables involving dynamical correlations display nonclassical scaling behavior that can nonetheless be determined exactly in two dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا