ﻻ يوجد ملخص باللغة العربية
Quantum phases of ultracold bosons with repulsive interactions in lattices in the presence of quenched disorder are investigated. The disorder is assumed to be caused by the interaction of the bosons with impurity atoms having a large effective mass. The system is described by the Bose-Hubbard Hamiltonian with random on-site energies which have a discrete binary probability distribution. The phase diagram at zero temperature is calculated using several methods like a strong-coupling expansion, an exact numerical diagonalization, and a Bose-Fermi mapping valid in the hard-core limit. It is shown that the Mott-insulator phase exists for any strength of disorder in contrast to the case of continuous probability distribution. We find that the compressibility of the Bose glass phase varies in a wide range and can be extremely low. Furthermore, we evaluate experimentally accessible quantities like the momentum distribution, the static and dynamic structure factors, and the density of excited states. The influence of finite temperature is discussed as well.
In the present paper we describe the properties induced by disorder on an ultracold gas of Bosonic atoms loaded into a two-dimensional optical lattice with global confinement ensured by a parabolic potential. Our analysis is centered on the spatial d
We investigate a $d$-dimensional model ($d$ = 2,3) for sound waves in a disordered environment, in which the local fluctuations of the elastic modulus are spatially correlated with a certain correlation length. The model is solved analytically by mea
We report on results of Quantum Monte Carlo simulations for bosons in a two dimensional quasi-periodic optical lattice. We study the ground state phase diagram at unity filling and confirm the existence of three phases: superfluid, Mott insulator, an
During the last decade, many exciting phenomena have been experimentally observed and theoretically predicted for ultracold atoms in optical lattices. This paper reviews these rapid developments concentrating mainly on the theory. Different types of
We propose to realize the anisotropic triangular-lattice Bose-Hubbard model with positive tunneling matrix elements by using ultracold atoms in an optical lattice dressed by a fast lattice oscillation. This model exhibits frustrated antiferromagnetis