ﻻ يوجد ملخص باللغة العربية
The electronic structure around a single As antisite in GaAs is investigated in bulk and near the surface both in the stable and the metastable atomic configurations. The most characteristic electronic structures of As antisite is the existence of the localized p-orbitals extending from the As antisite. The major component of the highest occupied state on As antisite in the stable configuration is s-orbital connecting with neighboring As atoms with nodes whereas that in the metastable configuration is p-orbital connecting without nodes. Localized p-orbitals on the surrounding As atoms around the As antisite exist in every configuration of As antisite. Such features are retained except the case of the As antisite located just in the surface layer in which the midgap level is smeared into the conduction band and no localized states exist near the top of the valence band. Scanning tunneling microscopic images of defects observed in low-temperature grown GaAs, possibly assigned as As antisite, the origin of the metastability, and the peculiarity of the defects in the surface layer are discussed.
Combining density-functional theory calculations and microscopic tight-binding models, we investigate theoretically the electronic and magnetic properties of individual substitutional transition-metal impurities (Mn and Fe) positioned in the vicinity
We report on the experimental observation by scanning tunneling microscopy at low temperature of ring-like features that appear around Co metal clusters deposited on a clean (110) oriented surface of cleaved p-type InAs crystals. These features are v
The direct growth of graphene on semiconducting or insulating substrates might help to overcome main drawbacks of metal-based synthesis, like metal-atom contaminations of graphene, transfer issues, etc. Here we present the growth of graphene on n-dop
Surface-assisted polymerization of molecular monomers into extended chains can be used as the seed of graphene nanoribbon (GNR) formation, resulting from a subsequent cyclo-dehydrogenation process. By means of valence-band photoemission and ab-initio
We investigate theoretically the effect of nearby As (arsenic) vacancies on the magnetic properties of substitutional Mn (manganese) impurities on the GaAs (110) surface, using a microscopic tight-binding model which captures the salient features of