ترغب بنشر مسار تعليمي؟ اضغط هنا

Electric manipulation of the Mn-acceptor binding energy and the Mn-Mn exchange interaction on the GaAs (110) surface by nearby As vacancies

138   0   0.0 ( 0 )
 نشر من قبل Reza Mahani
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate theoretically the effect of nearby As (arsenic) vacancies on the magnetic properties of substitutional Mn (manganese) impurities on the GaAs (110) surface, using a microscopic tight-binding model which captures the salient features of the electronic structure of both types of defects in GaAs. The calculations show that the binding energy of the Mn-acceptor is essentially unaffected by the presence of a neutral As vacancy, even at the shortest possible ${rm V}_{rm As}$--Mn separation. On the other hand, in contrast to a simple tip-induced-band-bending theory and in agreement with experiment, for a positively charged As vacancy the Mn-acceptor binding energy is significantly reduced as the As vacancy is brought closer to the Mn impurity. For two Mn impurities aligned ferromagnetically, we find that nearby charged As vacancies enhance the energy level splitting of the associated coupled acceptor levels, leading to an increase of the effective exchange interaction. Neutral vacancies leave the exchange splitting unchanged. Since it is experimentally possible to switch reversibly between the two charge states of the vacancy, such a local electric manipulation of the magnetic dopants could result in an efficient real-time control of their exchange interaction.



قيم البحث

اقرأ أيضاً

The local density of states of Mn-Mn pairs in GaAs is mapped with cross-sectional scanning tunneling microscopy and compared with theoretical calculations based on envelope-function and tight-binding models. These measurements and calculations show t hat the crosslike shape of the Mn-acceptor wavefunction in GaAs persists even at very short Mn-Mn spatial separations. The resilience of the Mn-acceptor wave-function to high doping levels suggests that ferromagnetism in GaMnAs is strongly influenced by impurity-band formation. The envelope-function and tight-binding models predict similarly anisotropic overlaps of the Mn wave-functions for Mn-Mn pairs. This anisotropy implies differing Curie temperatures for Mn $delta$-doped layers grown on differently oriented substrates.
We perform a theoretical study, using {it ab initio} total energy density-functional calculations, of the effects of disorder on the $Mn-Mn$ exchange interactions for $Ga_{1-x}Mn_xAs$ diluted semiconductors. For a 128 atoms supercell, we consider a v ariety of configurations with 2, 3 and 4 Mn atoms, which correspond to concentrations of 3.1%, 4.7%, and 6.3%, respectively. In this way, the disorder is intrinsically considered in the calculations. Using a Heisenberg Hamiltonian to map the magnetic excitations, and {it ab initio} total energy calculations, we obtain the effective $JMn$, from first ($n=1$) all the way up to sixth ($n=6$) neighbors. Calculated results show a clear dependence in the magnitudes of the $JMn$ with the Mn concentration $x$. Also, configurational disorder and/or clustering effects lead to large dispersions in the Mn-Mn exchange interactions, in the case of fixed Mn concentration. Moreover, theoretical results for the ground-state total energies for several configurations indicate the importance of a proper consideration of disorder in treating temperature and annealing effects.
We have studied the magnetic reversal of L-shaped nanostructures fabricated from (Ga,Mn)As. The strain relaxation due to the lithographic patterning results in each arm having a uniaxial magnetic anisotropy. Our analysis confirms that the magnetic re versal takes place via a combination of coherent rotation and domain wall propagation with the domain wall positioned at the corner of the device at intermediate stages of the magnetic hysteresis loops. The domain wall energy can be extracted from our analysis. Such devices have found implementation in studies of current induced domain wall motion and have the potential for application as non-volatile memory elements.
An individual Mn acceptor in GaAs is mapped by Cross-sectional Scanning Tunneling Microscopy (X-STM) at room temperature and a strongly anisotropic shape of the acceptor state is observed. An acceptor state manifests itself as a cross-like feature wh ich we attribute to a valence hole weakly bound to the Mn ion forming the (Mn$^{2+}3d^5+hole$) complex. We propose that the observed anisotropy of the Mn acceptor wave-function is due to the d-wave present in the acceptor ground state.
We investigate the properties of a single substitutional Mn impurity and its associated acceptor state on the (111) surface of Bi$_2$Se$_3$ topological insulator. Combining ab initio calculations with microscopic tight-binding modeling, we identify t he effects of inversion-symmetry and time-reversal-symmetry breaking on the electronic states in the vicinity of the Dirac point. In agreement with experiments, we find evidence that the Mn ion is in the ${+2}$-valence state and introduces an acceptor in the bulk band gap. The Mn-acceptor has predominantly $p$-character, and is localized mainly around the Mn impurity and its nearest-neighbor Se atoms. Its electronic structure and spin-polarization are determined by the hybridization between the Mn $d$-levels and the $p$-levels of surrounding Se atoms, which is strongly affected by electronic correlations at the Mn site. The opening of the gap at the Dirac point depends crucially on the quasi-resonant coupling and the strong real-space overlap between the spin-chiral surface states and the mid-gap spin-polarized Mn-acceptor states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا