ترغب بنشر مسار تعليمي؟ اضغط هنا

Growth and electronic structure of graphene on semiconducting Ge(110)

106   0   0.0 ( 0 )
 نشر من قبل Yu. S. Dedkov
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The direct growth of graphene on semiconducting or insulating substrates might help to overcome main drawbacks of metal-based synthesis, like metal-atom contaminations of graphene, transfer issues, etc. Here we present the growth of graphene on n-doped semiconducting Ge(110) by using an atomic carbon source and the study of the structural and electronic properties of the obtained interface. We found that graphene interacts weakly with the underlying Ge(110) substrate that keeps graphenes electronic structure almost intact promoting this interface for future graphene-semiconductor applications. The effect of dopants in Ge on the electronic properties of graphene is also discussed.



قيم البحث

اقرأ أيضاً

The implementation of graphene in semiconducting technology requires the precise knowledge about the graphene-semiconductor interface. In our work the structure and electronic properties of the graphene/$n$-Ge(110) interface are investigated on the l ocal (nm) and macro (from $mumathrm{m}$ to mm) scales via a combination of different microscopic and spectroscopic surface science techniques accompanied by density functional theory calculations. The electronic structure of freestanding graphene remains almost completely intact in this system, with only a moderate $n$-doping indicating weak interaction between graphene and the Ge substrate. With regard to the optimization of graphene growth it is found that the substrate temperature is a crucial factor, which determines the graphene layer alignment on the Ge(110) substrate during its growth from the atomic carbon source. Moreover, our results demonstrate that the preparation routine for graphene on the doped semiconducting material ($n$-Ge) leads to the effective segregation of dopants at the interface between graphene and Ge(110). Furthermore, it is shown that these dopant atoms might form regular structures at the graphene/Ge interface and induce the doping of graphene. Our findings help to understand the interface properties of the graphene-semiconductor interfaces and the effect of dopants on the electronic structure of graphene in such systems.
Surface-assisted polymerization of molecular monomers into extended chains can be used as the seed of graphene nanoribbon (GNR) formation, resulting from a subsequent cyclo-dehydrogenation process. By means of valence-band photoemission and ab-initio density-functional theory (DFT) calculations, we investigate the evolution of molecular states from monomer 10,10-dibromo-9,9bianthracene (DBBA) precursors to polyanthryl polymers, and eventually to GNRs, as driven by the Au(110) surface. The molecular orbitals and the energy level alignment at the metal-organic interface are studied in depth for the DBBA precursors deposited at room temperature. On this basis, we can identify a spectral fingerprint of C-Au interaction in both DBBA single-layer and polymerized chains obtained upon heating. Furthermore, DFT calculations help us evidencing that GNRs interact more strongly than DBBA and polyanthryl with the Au(110) substrate, as a result of their flatter conformation.
The practical difficulties to use graphene in microelectronics and optoelectronics is that the available methods to grow graphene are not easily integrated in the mainstream technologies. A growth method that could overcome at least some of these pro blems is chemical vapour deposition (CVD) of graphene directly on semiconducting (Si or Ge) substrates. Here we report on the comparison of the CVD and molecular beam epitaxy (MBE) growth of graphene on the technologically relevant Ge(001)/Si(001) substrate from ethene (C$_2$H$_4$) precursor and describe the physical properties of the films as well as we discuss the surface reaction and diffusion processes that may be responsible for the observed behavior. Using nano angle resolved photoemission (nanoARPES) complemented by transport studies and Raman spectroscopy, we report the direct observation of massless Dirac particles in monolayer graphene, providing a comprehensive mapping of their low-hole doped Dirac electron bands. The micrometric graphene flakes are oriented along two predominant directions rotated by $30^circ$ with respect to each other. The growth mode is attributed to the mechanism when small graphene molecules nucleate on the Ge(001) surface and it is found that hydrogen plays a significant role in this process.
Tellurium (Te) films with monolayer and few-layer thickness are obtained by molecular beam epitaxy on a graphene/6H-SiC(0001) substrate and investigated by in situ scanning tunneling microscopy and spectroscopy (STM/STS). We reveal that the Te films are composed of parallel-arranged helical Te chains flat-lying on the graphene surface, exposing the (1x1) facet of (10-10) of the bulk crystal. The band gap of Te films increases monotonically with decreasing thickness, reaching ~0.92 eV for the monolayer Te. An explicit band bending at the edge between the monolayer Te and graphene substrate is visualized. With the thickness controlled in atomic scale, Te films show potential applications of in electronics and optoelectronics.
299 - M. Sprinkle , J. Hicks , A. Tejeda 2010
We review progress in developing epitaxial graphene as a material for carbon electronics. In particular, improvements in epitaxial graphene growth, interface control and the understanding of multilayer epitaxial graphenes electronic properties are di scussed. Although graphene grown on both polar faces of SiC is addressed, our discussions will focus on graphene grown on the (000-1) C-face of SiC. The unique properties of C-face multilayer epitaxial graphene have become apparent. These films behave electronically like a stack of nearly independent graphene sheets rather than a thin Bernal-stacked graphite sample. The origin of multilayer graphenes electronic behavior is its unique highly-ordered stacking of non-Bernal rotated graphene planes. While these rotations do not significantly affect the inter-layer interactions, they do break the stacking symmetry of graphite. It is this broken symmetry that causes each sheet to behave like an isolated graphene plane.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا