ﻻ يوجد ملخص باللغة العربية
We implement the impedance measurement technique (IMT) for characterization of interferometer-type superconducting qubits. In the framework of this method, the interferometer loop is inductively coupled to a high-quality tank circuit. We show that the IMT is a powerful tool to study a response of externally controlled two-level system to different types of excitations. Conclusive information about qubits is obtained from the read-out of the tank properties.
The authors demonstrate quadratic mixing of weak time harmonic electromagnetic fields applied to Superconducting Quantum Interference Filters, manufactured from high-$T_{mathrm{c}}$ grain boundary Josephson junctions and operated in active microcoole
A new method of preparation of radio-frequency superconducting quantum interference devices on MgB2 thin films is presented. The variable-thickness bridge was prepared by a combination of optical lithography and of the scratching by an atomic force m
Exploring superconductors which can possess pairing mechanism other than the BCS predicted s-wave have continually attracted considerable interest. Superconductors with low-lying phonons may exhibit unconventional superconductivity as the coupling of
A model for the onset of the reduction in SRF cavity quality factor, the so-called Q-drop, at high accelerating electric fields is presented. Breakdown of the surface barrier against magnetic flux penetration at the cavity equator is considered to be
Time-domain observations of coherent oscillations between quantum states in mesoscopic superconducting systems were so far restricted to restoring the time-dependent probability distribution from the readout statistics. We propose a new method for di