ترغب بنشر مسار تعليمي؟ اضغط هنا

Radio-Frequency Method for Investigation of Quantum Properties of Superconducting Structures

219   0   0.0 ( 0 )
 نشر من قبل Andrei Izmalkov
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We implement the impedance measurement technique (IMT) for characterization of interferometer-type superconducting qubits. In the framework of this method, the interferometer loop is inductively coupled to a high-quality tank circuit. We show that the IMT is a powerful tool to study a response of externally controlled two-level system to different types of excitations. Conclusive information about qubits is obtained from the read-out of the tank properties.



قيم البحث

اقرأ أيضاً

The authors demonstrate quadratic mixing of weak time harmonic electromagnetic fields applied to Superconducting Quantum Interference Filters, manufactured from high-$T_{mathrm{c}}$ grain boundary Josephson junctions and operated in active microcoole r. The authors use the parabolic shape of the dip in the dc-voltage output around B=0 to mix emph{quadratically} two external rf-signals, at frequencies $f_{mathrm{1}}$ and $f_{mathrm{2}}$ well below the Josephson frequency $f_{mathrm{J}}$, and detect the corresponding mixing signal at $| {f_{1}-f_{2}}| $. Quadratic mixing takes also place when the SQIF is operated without magnetic shield. The experimental results are well described by a simple analytical model based on the adiabatic approximation.
A new method of preparation of radio-frequency superconducting quantum interference devices on MgB2 thin films is presented. The variable-thickness bridge was prepared by a combination of optical lithography and of the scratching by an atomic force m icroscope. The critical current of the nanobridge was 0.35 uA at 4.2 K. Non-contact measurements of the current-phase characteristics and of the critical current vs. temperature have been investigated on our structures.
145 - Arushi , Kapil Motla , P. K. Meena 2021
Exploring superconductors which can possess pairing mechanism other than the BCS predicted s-wave have continually attracted considerable interest. Superconductors with low-lying phonons may exhibit unconventional superconductivity as the coupling of electrons with these low-lying phonons can potentially affect the nature of the superconducting ground state, resulting in strongly coupled superconductivity. In this work, by using magnetization, AC transport, specific heat, and muon spin rotation/relaxation ($mu$SR) measurements, we report a detailed investigation on the superconducting ground state of the strongly coupled superconductor, IrGe, that has a transition temperature, T$_{C}$, at 4.7 K. Specific heat (SH), and transverse field $mu$SR is best described with an isotropic s-wave model with strong electron-phonon coupling, indicated by the values of both $Delta(0)/k_{B}T_{C}$ = 2.3, 2.1 (SH, $mu$SR), and $Delta C_{el}/gamma_{n}T_{C}$ = 2.7. Zero-field $mu$SR measurements confirm the presence of time-reversal symmetry in the superconducting state of IrGe.
109 - A Dzyuba , A Romanenko , 2010
A model for the onset of the reduction in SRF cavity quality factor, the so-called Q-drop, at high accelerating electric fields is presented. Breakdown of the surface barrier against magnetic flux penetration at the cavity equator is considered to be the critical event that determines the onset of Q-drop. The worst case of triangular grooves with low field of first flux penetration Hp, as analyzed previously by Buzdin and Daumens, [1998 Physica C 294: 257], was adapted. This approach incorporates both the geometry of the groove and local contamination via the Ginzburg-Landau parameter kappa, so the proposed model allows new comparisons of one effect in relation to the other. The model predicts equivalent reduction of Hp when either roughness or contamination were varied alone, so smooth but dirty surfaces limit cavity performance about as much as rough but clean surfaces do. When in combination, contamination exacerbates the negative effects of roughness and vice-versa. To test the model with actual data, coupons were prepared by buffered chemical polishing and electropolishing, and stylus profilometry was used to obtain distributions of angles. From these data, curves for surface resistance generated by simple flux flow as a function of magnetic field were generated by integrating over the distribution of angles for reasonable values of kappa. This showed that combined effects of roughness and contamination indeed reduce the Q-drop onset field by ~30%, and that that contamination contributes to Q-drop as much as roughness. The latter point may be overlooked by SRF cavity research, since access to the cavity interior by spectroscopy tools is very difficult, whereas optical images have become commonplace. The model was extended to fit cavity test data, which indicated that reduction of the superconducting gap by contaminants may also play a role in Q-drop.
Time-domain observations of coherent oscillations between quantum states in mesoscopic superconducting systems were so far restricted to restoring the time-dependent probability distribution from the readout statistics. We propose a new method for di rect observation of Rabi oscillations in a phase qubit. The external source, typically in GHz range, induces transitions between the qubit levels. The resulting Rabi oscillations of supercurrent in the qubit loop are detected by a high quality resonant tank circuit, inductively coupled to the phase qubit. Detailed calculation for zero and non-zero temperature are made for the case of persistent current qubit. According to the estimates for dephasing and relaxation times, the effect can be detected using conventional rf circuitry, with Rabi frequency in MHz range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا