ﻻ يوجد ملخص باللغة العربية
In this work, we study the critical behavior of an epidemic propagation model that considers individuals that can develop drug resistance. In our lattice model, each site can be found in one of four states: empty, healthy, normally infected (not drug resistant) and strain infected (drug resistant) states. The most relevant parameters in our model are related to the mortality, cure and mutation rates. This model presents two distinct stationary active phases: a phase with co-existing normal and drug resistant infected individuals and an intermediate active phase with only drug resistant individuals. We employ a finite-size scaling analysis to compute the critical points the critical exponents ratio $beta/ u$ governing the phase-transitions between these active states and the absorbing inactive state. Our results are consistent with the hypothesis that these transitions belong to the directed percolation universality class.
We study the effect of the connectivity pattern of complex networks on the propagation dynamics of epidemics. The growth time scale of outbreaks is inversely proportional to the network degree fluctuations, signaling that epidemics spread almost inst
Many studies on animal and human movement patterns report the existence of scaling laws and power-law distributions. Whereas a number of random walk models have been proposed to explain observations, in many situations individuals actually rely on me
We study critical behavior of the diluted 2D Ising model in the presence of disorder correlations which decay algebraically with distance as $sim r^{-a}$. Mapping the problem onto 2D Dirac fermions with correlated disorder we calculate the critical p
We introduce a 2-layer network model for the study of the immunization dynamics in epidemics. Spreading of an epidemic is modeled as an excitatory process in a small-world network (body layer) while immunization by prevention for the disease as a dyn
We study an S--I type epidemic model in an age-structured population, with mortality due to the disease. A threshold quantity is found that controls the stability of the disease-free equilibrium and guarantees the existence of an endemic equilibrium.