ترغب بنشر مسار تعليمي؟ اضغط هنا

Existence, multiplicity and stability of endemic states for an age-structured S-I epidemic model

64   0   0.0 ( 0 )
 نشر من قبل Daniela Visetti
 تاريخ النشر 2010
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study an S--I type epidemic model in an age-structured population, with mortality due to the disease. A threshold quantity is found that controls the stability of the disease-free equilibrium and guarantees the existence of an endemic equilibrium. We obtain conditions on the age-dependence of the susceptibility to infection that imply the uniqueness of the endemic equilibrium. An example with two endemic equilibria is shown. Finally, we analyse numerically how the stability of the endemic equilibrium is affected by extra-mortality and by the possible periodicities induced by the demographic age-structure.

قيم البحث

اقرأ أيضاً

We introduce a nonlinear structured population model with diffusion in the state space. Individuals are structured with respect to a continuous variable which represents a pathogen load. The class of uninfected individuals constitutes a special compa rtment that carries mass, hence the model is equipped with generalized Wentzell (or dynamic) boundary conditions. Our model is intended to describe the spread of infection of a vertically transmitted disease, for example Wolbachia in a mosquito population. Therefore the (infinite dimensional) nonlinearity arises in the recruitment term. First we establish global existence of solutions and the Principle of Linearised Stability for our model. Then, in our main result, we formulate simple conditions, which guarantee the existence of non-trivial steady states of the model. Our method utilizes an operator theoretic framework combined with a fixed point approach. Finally, in the last section we establish a sufficient condition for the local asymptotic stability of the positive steady state.
In this work, we study the critical behavior of an epidemic propagation model that considers individuals that can develop drug resistance. In our lattice model, each site can be found in one of four states: empty, healthy, normally infected (not drug resistant) and strain infected (drug resistant) states. The most relevant parameters in our model are related to the mortality, cure and mutation rates. This model presents two distinct stationary active phases: a phase with co-existing normal and drug resistant infected individuals and an intermediate active phase with only drug resistant individuals. We employ a finite-size scaling analysis to compute the critical points the critical exponents ratio $beta/ u$ governing the phase-transitions between these active states and the absorbing inactive state. Our results are consistent with the hypothesis that these transitions belong to the directed percolation universality class.
In this paper we provide the derivation of a super compact pairwise model with only 4 equations in the context of describing susceptible-infected-susceptible (SIS) epidemic dynamics on heterogenous networks. The super compact model is based on a new closure relation that involves not only the average degree but also the second and third moments of the degree distribution. Its derivation uses an a priori approximation of the degree distribution of susceptible nodes in terms of the degree distribution of the network. The new closure gives excellent agreement with heterogeneous pairwise models that contain significantly more differential equations.
We study the existence and multiplicity of nonnegative solutions, as well as the behaviour of corresponding parameter-dependent branches, to the equation $-Delta u = (1-u) u^m - lambda u^n$ in a bounded domain $Omega subset mathbb{R}^N$ endowed with the zero Dirichlet boundary data, where $0<m leq 1$ and $n>0$. When $lambda > 0$, the obtained solutions can be seen as steady states of the corresponding reaction-diffusion equation describing a model of isothermal autocatalytic chemical reaction with termination. In addition to the main new results, we formulate a few relevant conjectures.
Structured population models are a class of general evolution equations which are widely used in the study of biological systems. Many theoretical methods are available for establishing existence and stability of steady states of general evolution eq uations. However, except for very special cases, finding an analytical form of stationary solutions for evolution equations is a challenging task. In the present paper, we develop a numerical framework for computing approximations to stationary solutions of general evolution equations, which can also be used to produce existence and stability regions for steady states. In particular, we use the Trotter-Kato Theorem to approximate the infinitesimal generator of an evolution equation on a finite dimensional space, which in turn reduces the evolution equation into a system of ordinary differential equations. Consequently, we approximate and study the asymptotic behavior of stationary solutions. We illustrate the convergence of our numerical framework by applying it to a linear Sinko-Streifer structured population model for which the exact form of the steady state is known. To further illustrate the utility of our approach, we apply our framework to nonlinear population balance equation, which is an extension of well-known Smoluchowksi coagulation-fragmentation model to biological populations. We also demonstrate that our numerical framework can be used to gain insight about the theoretical stability of the stationary solutions of the evolution equations. Furthermore, the open source Python program that we have developed for our numerical simulations is freely available from our Github repository (github.com/MathBioCU).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا