ﻻ يوجد ملخص باللغة العربية
We investigate the superfluid properties of a Bose-Einstein condensate (BEC) trapped in a one dimensional periodic potential. We study, both analytically (in the tight binding limit) and numerically, the Bloch chemical potential, the Bloch energy and the Bogoliubov dispersion relation, and we introduce {it two} different, density dependent, effective masses and group velocities. The Bogoliubov spectrum predicts the existence of sound waves, and the arising of energetic and dynamical instabilities at critical values of the BEC quasi-momentum which dramatically affect its coherence properties. We investigate the dependence of the dipole and Bloch oscillation frequencies in terms of an effective mass averaged over the density of the condensate. We illustrate our results with several animations obtained solving numerically the time-dependent Gross-Pitaevskii equation.
By accelerating a Bose-Einstein condensate in a controlled way across the edge of the Brillouin zone of a 1D optical lattice, we investigate the stability of the condensate in the vicinity of the zone edge. Through an analysis of the visibility of th
Surface modes in a Bose-Einstein condensate of sodium atoms have been studied. We observed excitations of standing and rotating quadrupolar and octopolar modes. The modes were excited with high spatial and temporal resolution using the optical dipole
A simple model of an atomic Bose-Einstein condensate in a box whose size varies with time is studied to determine the nature of adiabaticity in the nonlinear dynamics obtained within the Gross-Pitaevskii equation (the nonlinear Schr{o}dinger equation
Our recent measurements on the expansion of a chromium dipolar condensate after release from an optical trapping potential are in good agreement with an exact solution of the hydrodynamic equations for dipolar Bose gases. We report here the theoretic
The macroscopic coherent tunneling through the barriers of a periodic potential is used as an atomoptical filter to separate the condensate and the thermal components of a $^{87}$Rb mixed cloud. We condense in the combined potential of a laser standi