ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of a Bose-Einstein condensate at finite temperature in an atomoptical coherence filter

65   0   0.0 ( 0 )
 نشر من قبل Francesca Ferlaino
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The macroscopic coherent tunneling through the barriers of a periodic potential is used as an atomoptical filter to separate the condensate and the thermal components of a $^{87}$Rb mixed cloud. We condense in the combined potential of a laser standing-wave superimposed on the axis of a cigar-shape magnetic trap and induce condensate dipole oscillation in the presence of a static thermal component. The oscillation is damped due to interaction with the thermal fraction and we investigate the role played by the periodic potential in the damping process.



قيم البحث

اقرأ أيضاً

We perform finite-temperature dynamical simulations of the arrest of a rotating Bose-Einstein condensate by a fixed trap anisotropy, using a Hamiltonian classical-field method. We consider a quasi-two-dimensional condensate containing a single vortex in equilibrium with a rotating thermal cloud. Introducing an elliptical deformation of the trapping potential leads to the loss of angular momentum from the system. We identify the condensate and the complementary thermal component of the nonequilibrium field, and compare the evolution of their angular momenta and angular velocities. By varying the trap anisotropy we alter the relative efficiencies of the vortex-cloud and cloud-trap coupling. For strong trap anisotropies the angular momentum of the thermal cloud may be entirely depleted before the vortex begins to decay. For weak trap anisotropies, the thermal cloud exhibits a long-lived steady state in which it rotates at an intermediate angular velocity.
We investigate the superfluid properties of a Bose-Einstein condensate (BEC) trapped in a one dimensional periodic potential. We study, both analytically (in the tight binding limit) and numerically, the Bloch chemical potential, the Bloch energy and the Bogoliubov dispersion relation, and we introduce {it two} different, density dependent, effective masses and group velocities. The Bogoliubov spectrum predicts the existence of sound waves, and the arising of energetic and dynamical instabilities at critical values of the BEC quasi-momentum which dramatically affect its coherence properties. We investigate the dependence of the dipole and Bloch oscillation frequencies in terms of an effective mass averaged over the density of the condensate. We illustrate our results with several animations obtained solving numerically the time-dependent Gross-Pitaevskii equation.
Coherent coupling between atoms and molecules in a Bose-Einstein condensate (BEC) has been observed. Oscillations between atomic and molecular states were excited by sudden changes in the magnetic field near a Feshbach resonance and persisted for man y periods of the oscillation. The oscillation frequency was measured over a large range of magnetic fields and is in excellent quantitative agreement with the energy difference between the colliding atom threshold energy and the energy of the bound molecular state. This agreement indicates that we have created a quantum superposition of atoms and diatomic molecules, which are chemically different species.
108 - R. Meppelink , S.B. Koller , 2009
We study the propagation of a density wave in a magnetically trapped Bose-Einstein condensate at finite temperatures. The thermal cloud is in the hydrodynamic regime and the system is therefore described by the two-fluid model. A phase-contrast imagi ng technique is used to image the cloud of atoms and allows us to observe small density excitations. The propagation of the density wave in the condensate is used to determine the speed of sound as a function of the temperature. We find the speed of sound to be in good agreement with calculations based on the Landau two-fluid model.
231 - S. J. Woo , Young-Woo Son 2012
We theoretically show that the topology of a non-simply-connected annular atomic Bose-Einstein condensate enforces the inner surface waves to be always excited with outer surface excitations and that the inner surface modes are associated with induce d vortex dipoles unlike the surface waves of a simply-connected one with vortex monopoles. Consequently, under stirring to drive an inner surface wave, a peculiar population oscillation between the inner and outer surface is generated regardless of annulus thickness. Moreover, a new vortex nucleation process by stirring is observed that can merge the inner vortex dipoles and outer vortex into a single vortex inside the annulus. The energy spectrum for a rotating annular condensate with a vortex at the center also reveals the distinct connection of the Tkachenko modes of a vortex lattice to its inner surface excitations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا