ﻻ يوجد ملخص باللغة العربية
This review is a kinetic theory study investigating the effects of inelasticity on the structure of the non-equilibrium states, in particular on the behavior of the velocity distribution in the high energy tails. Starting point is the nonlinear Boltzmann equation for spatially homogeneous systems, which supposedly describes the behavior of the velocity distribution function in dissipative systems as long as the system remains in the homogeneous cooling state, i.e. on relatively short time scales before the clustering and similar instabilities start to create spatial inhomogeneities. This is done for the two most common models for dissipative systems, i.e. inelastic hard spheres and inelastic Maxwell particles. In systems of Maxwell particles the collision frequency is independent of the relative velocity of the colliding particles, and in hard sphere systems it is linear. We then demonstrate the existence of scaling solutions for the velocity distribution function, $F(v,t) sim v_0(t)^{-d} f((v/v_0(t))$, where $v_0$ is the r.m.s. velocity. The scaling form $f(c)$ shows overpopulation in the high energy tails. In the case of freely cooling systems the tails are of algebraic form, $ f(c)sim c^{-d-a}$, where the exponent $a$ may or may not depend on the degree of inelasticity, and in the case of forced systems the tails are of stretched Gaussian type $f(v)simexp[-beta (v/v_0)^b]$ with $b <2$.
Through an exact analysis, we show the existence of Mpemba effect in an anisotropically driven inelastic Maxwell gas, a simplified model for granular gases, in two dimensions. Mpemba effect refers to the couterintuitive phenomenon of a hotter system
The nature of the velocity distribution of a driven granular gas, though well studied, is unknown as to whether it is universal or not, and if universal what it is. We determine the tails of the steady state velocity distribution of a driven inelasti
Large scale simulations and analytical theory have been combined to obtain the non-equilibrium velocity distribution, $f(v)$, of randomly accelerated particles in suspension. The simulations are based on an event-driven algorithm, generalised to incl
Mpemba effect refers to the counterintuitive result that, when quenched to a low temperature, a system at higher temperature may equilibrate faster than one at intermediate temperatures. This effect has recently been demonstrated in driven granular g
The Boltzmann equation for inelastic Maxwell models is considered to determine the rheological properties in a granular binary mixture in the simple shear flow state. The transport coefficients (shear viscosity and viscometric functions) are {em exac