ترغب بنشر مسار تعليمي؟ اضغط هنا

Anomalous velocity distributions in inelastic Maxwell gases

68   0   0.0 ( 0 )
 نشر من قبل Ricardo Brito
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This review is a kinetic theory study investigating the effects of inelasticity on the structure of the non-equilibrium states, in particular on the behavior of the velocity distribution in the high energy tails. Starting point is the nonlinear Boltzmann equation for spatially homogeneous systems, which supposedly describes the behavior of the velocity distribution function in dissipative systems as long as the system remains in the homogeneous cooling state, i.e. on relatively short time scales before the clustering and similar instabilities start to create spatial inhomogeneities. This is done for the two most common models for dissipative systems, i.e. inelastic hard spheres and inelastic Maxwell particles. In systems of Maxwell particles the collision frequency is independent of the relative velocity of the colliding particles, and in hard sphere systems it is linear. We then demonstrate the existence of scaling solutions for the velocity distribution function, $F(v,t) sim v_0(t)^{-d} f((v/v_0(t))$, where $v_0$ is the r.m.s. velocity. The scaling form $f(c)$ shows overpopulation in the high energy tails. In the case of freely cooling systems the tails are of algebraic form, $ f(c)sim c^{-d-a}$, where the exponent $a$ may or may not depend on the degree of inelasticity, and in the case of forced systems the tails are of stretched Gaussian type $f(v)simexp[-beta (v/v_0)^b]$ with $b <2$.



قيم البحث

اقرأ أيضاً

Through an exact analysis, we show the existence of Mpemba effect in an anisotropically driven inelastic Maxwell gas, a simplified model for granular gases, in two dimensions. Mpemba effect refers to the couterintuitive phenomenon of a hotter system relaxing to the steady state faster than a cooler system, when both are quenched to the same lower temperature. The Mpemba effect has been illustrated in earlier studies on isotropically driven granular gases, but its existence requires non-stationary initial states, limiting experimental realisation. In this paper, we demonstrate the existence of the Mpemba effect in anisotropically driven granular gases even when the initial states are non-equilibrium steady states. The precise conditions for the Mpemba effect, its inverse, and the stronger version, where the hotter system cools exponentially faster are derived.
The nature of the velocity distribution of a driven granular gas, though well studied, is unknown as to whether it is universal or not, and if universal what it is. We determine the tails of the steady state velocity distribution of a driven inelasti c Maxwell gas, which is a simple model of a granular gas where the rate of collision between particles is independent of the separation as well as the relative velocity. We show that the steady state velocity distribution is non-universal and depends strongly on the nature of driving. The asymptotic behavior of the velocity distribution are shown to be identical to that of a non-interacting model where the collisions between particles are ignored. For diffusive driving, where collisions with the wall are modelled by an additive noise, the tails of the velocity distribution is universal only if the noise distribution decays faster than exponential.
Large scale simulations and analytical theory have been combined to obtain the non-equilibrium velocity distribution, $f(v)$, of randomly accelerated particles in suspension. The simulations are based on an event-driven algorithm, generalised to incl ude friction. They reveal strongly anomalous but largely universal distributions which are independent of volume fraction and collision processes, which suggests a one-particle model should capture all the essential features. We have formulated this one-particle model and solved it analytically in the limit of strong damping, where we find that $f(v)$ decays as $1/v$ for multiple decades, eventually crossing over to a Gaussian decay for the largest velocities. Many particle simulations and numerical solution of the one-particle model agree for all values of the damping.
Mpemba effect refers to the counterintuitive result that, when quenched to a low temperature, a system at higher temperature may equilibrate faster than one at intermediate temperatures. This effect has recently been demonstrated in driven granular g ases, both for smooth as well as rough hard-sphere systems based on a perturbative analysis. In this paper, we consider the inelastic driven Maxwell gas, a simplified model for a granular gas, where the rate of collision is assumed to be independent of the relative velocity. Through an exact analysis, we determine the conditions under which a Mpemba effect is present in this model. For mono-dispersed gases, we show that the Mpemba effect is present only when the initial states are allowed to be non-stationary, while for bi-dispersed gases, it is present for steady state initial states. We also demonstrate the existence of the strong Mpemba effect for bi-dispersed Maxwell gas wherein the system at higher temperature relaxes to a final steady state at an exponentially faster rate leading to smaller equilibration time.
The Boltzmann equation for inelastic Maxwell models is considered to determine the rheological properties in a granular binary mixture in the simple shear flow state. The transport coefficients (shear viscosity and viscometric functions) are {em exac tly} evaluated in terms of the coefficients of restitution, the (reduced) shear rate and the parameters of the mixture (particle masses, diameters and concentration). The results show that in general, for a given value of the coefficients of restitution, the above transport properties decrease with increasing shear rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا