ﻻ يوجد ملخص باللغة العربية
We study the dynamics of an electron subjected to a uniform electric field within a tight-binding model with long-range-correlated diagonal disorder. The random distribution of site energies is assumed to have a power spectrum $S(k) sim 1/k^{alpha}$ with $alpha > 0$. Moura and Lyra [Phys. Rev. Lett. {bf 81}, 3735 (1998)] predicted that this model supports a phase of delocalized states at the band center, separated from localized states by two mobility edges, provided $alpha > 2$. We find clear signatures of Bloch-like oscillations of an initial Gaussian wave packet between the two mobility edges and determine the bandwidth of extended states, in perfect agreement with the zero-field prediction.
We study the dynamics of an electron subjected to a static uniform electric field within a one-dimensional tight-binding model with a slowly varying aperiodic potential. The unbiased model is known to support phases of localized and extended one-elec
The standard two-dimensional Ising spin glass does not exhibit an ordered phase at finite temperature. Here, we investigate whether long-range correlated bonds change this behavior. The bonds are drawn from a Gaussian distribution with a two-point co
We investigate the spectral function of Bloch states in an one-dimensional tight-binding non-interacting chain with two different models of static correlated disorder, at zero temperature. We report numerical calculations of the single-particle spect
A microwave setup for mode-resolved transport measurement in quasi-one-dimensional (quasi-1D) structures is presented. We will demonstrate a technique for direct measurement of the Greens function of the system. With its help we will investigate quas
We study critical behavior of the diluted 2D Ising model in the presence of disorder correlations which decay algebraically with distance as $sim r^{-a}$. Mapping the problem onto 2D Dirac fermions with correlated disorder we calculate the critical p