ﻻ يوجد ملخص باللغة العربية
We investigate the spectral function of Bloch states in an one-dimensional tight-binding non-interacting chain with two different models of static correlated disorder, at zero temperature. We report numerical calculations of the single-particle spectral function based on the Kernel Polynomial Method, which has an $mathcal{O}(N)$ computational complexity. These results are then confirmed by analytical calculations, where precise conditions were obtained for the appearance of a classical limit in a single-band lattice system. Spatial correlations in the disordered potential give rise to non-perturbative spectral functions shaped as the probability distribution of the random on-site energies, even at low disorder strengths. In the case of disordered potentials with an algebraic power-spectrum, $proptoleft|kright|^{-alpha}$, we show that the spectral function is not self-averaging for $alphageq1$.
A microwave setup for mode-resolved transport measurement in quasi-one-dimensional (quasi-1D) structures is presented. We will demonstrate a technique for direct measurement of the Greens function of the system. With its help we will investigate quas
We study the dynamics of an electron subjected to a uniform electric field within a tight-binding model with long-range-correlated diagonal disorder. The random distribution of site energies is assumed to have a power spectrum $S(k) sim 1/k^{alpha}$
We investigate a $d$-dimensional model ($d$ = 2,3) for sound waves in a disordered environment, in which the local fluctuations of the elastic modulus are spatially correlated with a certain correlation length. The model is solved analytically by mea
We use large-scale Monte Carlo simulations to test the Weinrib-Halperin criterion that predicts new universality classes in the presence of sufficiently slowly decaying power-law-correlated quenched disorder. While new universality classes are reason
We evaluate the localization length of the wave solution of a random potential characterized by an arbitrary autocorrelation function. We go beyond the Born approximation to evaluate the localization length using a non-linear approximation and calcul