ترغب بنشر مسار تعليمي؟ اضغط هنا

Continuum description of profile scaling in nanostructure decay

183   0   0.0 ( 0 )
 نشر من قبل Michael J. Aziz
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The relaxation of axisymmetric crystal surfaces with a single facet below the roughening transition is studied via a continuum approach that accounts for step energy g_1 and step-step interaction energy g_3>0. For diffusion-limited kinetics, free-boundary and boundary-layer theories are used for self-similar shapes close to the growing facet. For long times and g_3/g_1 < 1, (a) a universal equation is derived for the shape profile, (b) the layer thickness varies as (g_3/g_1)^{1/3}, (c) distinct solutions are found for different g_3/_1, and (d) for conical shapes, the profile peak scales as (g_3/g_1)^{-1/6}. These results compare favorably with kinetic simulations.

قيم البحث

اقرأ أيضاً

The contribution of the valence electrons to the Compton profiles of the alkali metals is calculated using density functional theory. We show that the Compton profiles can be modeled by a $q-$Gaussian distribution, which is characterized by an anisot ropic, element dependent parameter $q$. Thereby we derive an unexpected scaling behavior of the Compton profiles of all alkali metals.
63 - H. Jang , G. Kerr , J. S. Lim 2015
We demonstrate the microscopic role of oxygen vacancies spatially confined within nanometer inter-spacing (about 1 nm) in BiFeO3, using resonant soft X-ray scattering techniques and soft X-ray spectroscopy measurements. Such vacancy confinements and total number of vacancy are controlled by substitution of Ca2+ for Bi3+ cation. We found that by increasing the substitution, the in-plane orbital bands of Fe3+ cations are reconstructed without any redox reaction. It leads to a reduction of the hopping between Fe atoms, forming a localized valence band, in particular Fe 3d-electronic structure, around the Fermi level. This band localization causes to decrease the conductivity of the doped BiFeO3 system.
Neutron irradiation induces in steels nanostructural changes, which are at the origin of the mechanical degradation that these materials experience during operation in nuclear power plants. Some of these effects can be studied by using as model alloy the iron-carbon system. The Object Kinetic Monte Carlo technique has proven capable of simulating in a realistic and quantitatively reliable way a whole irradiation process. We have developed a model for simulating Fe-C systems using a physical description of the properties of vacancy and self-interstitial atom (SIA) clusters, based on a selection of the latest data from atomistic studies and other available experimental and theoretical work from the literature. Based on these data, the effect of carbon on radiation defect evolution has been largely understood in terms of formation of immobile complexes with vacancies that in turn act as traps for SIA clusters. It is found that this effect can be introduced using generic traps for SIA and vacancy clusters, with a binding energy that depends on the size of the clusters, also chosen on the basis on previously performed atomistic studies. The model proved suitable to reproduce the results of low (<350 K) temperature neutron irradiation experiments, as well as the corresponding post-irradiation annealing up to 700 K, in terms of defect cluster densities and size distribution, when compared to available experimental data from the literature. The use of traps proved instrumental for our model.
393 - J. Ma , O. Delaire , A. F. May 2014
Materials with very low thermal conductivity are of high interest for both thermoelectric and optical phase-change applications. Synthetic nanostructuring is most promising to suppress thermal conductivity by scattering phonons, but challenges remain in producing bulk samples. We show that in crystalline AgSbTe$_2$, a spontaneously-forming nanostructure leads to a suppression of thermal conductivity to a glass-like level. Our mapping of the phonon mean-free-paths provides a novel bottom-up microscopic account of thermal conductivity, and also reveals intrinsic anisotropies associated with the nanostructure. Ground-state degeneracy in AgSbTe$_2$ leads to the natural formation of nanoscale domains with different orderings on the cation sublattice, and correlated atomic displacements, which efficiently scatter phonons. This mechanism is general and points to a new avenue in nano-scale engineering of materials, to achieve low thermal conductivities for efficient thermoelectric converters and phase-change memory devices.
Atomic-scale magnetic nanostructures are promising candidates for future information processing devices. Utilizing external electric field to manipulate their magnetic properties is an especially thrilling project. Here, by careful identifying differ ent contributions of each atomic orbital to the magnetic anisotropy energy (MAE) of the ferromagnetic metal films, we argue that it is possible to engineer both the MAE and the magnetic response to the electric field of atomic-scale magnetic nanostructures. Taking the iron monolayer as a matrix, we propose several interesting iron nanostructures with dramatically different magnetic properties. Such nanostructures could exhibit strong magnetoelectric effect. Our work may open a new avenue to the artificial design of electrically controlled magnetic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا