ترغب بنشر مسار تعليمي؟ اضغط هنا

Orbital Reconstruction in a Self-assembled Oxygen Vacancy Nanostructure

64   0   0.0 ( 0 )
 نشر من قبل Hoyoung Jang
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate the microscopic role of oxygen vacancies spatially confined within nanometer inter-spacing (about 1 nm) in BiFeO3, using resonant soft X-ray scattering techniques and soft X-ray spectroscopy measurements. Such vacancy confinements and total number of vacancy are controlled by substitution of Ca2+ for Bi3+ cation. We found that by increasing the substitution, the in-plane orbital bands of Fe3+ cations are reconstructed without any redox reaction. It leads to a reduction of the hopping between Fe atoms, forming a localized valence band, in particular Fe 3d-electronic structure, around the Fermi level. This band localization causes to decrease the conductivity of the doped BiFeO3 system.



قيم البحث

اقرأ أيضاً

176 - Z. Q. Liu , W. Lu , S. W. Zeng 2014
We report very large bandgap enhancement in SrTiO3 (STO) films (fabricated by pulsed laser deposition below 800 {deg}C), which can be up to 20% greater than the bulk value, depending on the deposition temperature. The origin is comprehensively invest igated and finally attributed to Sr/Ti antisite point defects, supported by density functional theory calculations. More importantly, the bandgap enhancement can be utilized to tailor the electronic and magnetic phases of the two-dimensional electron gas (2DEG) in STO-based interface systems. For example, the oxygen-vacancy-induced 2DEG (2DEG-V) at the interface between amorphous LaAlO3 and STO films is more localized and the ferromagnetic order in the STO-film-based 2DEG-V can be clearly seen from low-temperature magnetotransport measurements. This opens an attractive path to tailor electronic, magnetic and optical properties of STO-based oxide interface systems under intensive focus in the oxide electronics community. Meanwhile, our study provides key insight into the origin of the fundamental issue that STO films are difficult to be doped into the fully metallic state by oxygen vacancies.
We use density functional theory to calculate the structure, band-gap and magnetic properties of oxygen-deficient SrTi$_{1-x-y}$Fe$_x$Co$_y$O$_{3-delta}$ with x = y = 0.125 and ${delta}$ = (0,0.125,0.25). The valence and the high or low spin-states o f the Co and Fe ions, as well as the lattice distortion and the band-gap, depend on the oxygen deficiency, the locations of the vacancies, and on the direction of the Fe-Co axis. A charge redistribution that resembles a self-regulatory response lies behind the valence spin-state changes. Ferromagnetism dominates, and both the magnetization and the band gap are greatest at ${delta}$ = 0.125. This qualitatively mimics the previously reported magnetization measured for SrTiFeO$_{3-delta}$, which was maximum at an intermediate deposition pressure of oxygen.
Unknown changes in the crystalline order of regular TiO$_2$ result in the formation of black titania, which has garnered significant interest as a photocatalytic material due to the accompanying electronic changes. Herein, we determine the nature of the lattice distortion caused by an oxygen vacancy that in turn results in the formation of mid-band gap states found in previous studies of black titania. We introduce an innovative technique using a state-of-the-art silicon drift detector, which can be used in conjunction with extended x-ray absorption fine structure (EXAFS) to measure bulk interatomic distances. We illustrate how the energy dispersive nature of such a detector can allow us an unimpeded signal, indefinitely in energy space, thereby sidestepping the hurdles of more conventional EXAFS, which is often impeded by other absorption edges.
Conventional two-dimensional electron gases are realized by engineering the interfaces between semiconducting compounds. In 2004, Ohtomo and Hwang discovered that an electron gas can be also realized at the interface between large gap insulators made of transition metal oxides [1]. This finding has generated considerable efforts to clarify the underlying microscopic mechanism. Of particular interest is the LaAlO3/SrTiO3 system, because it features especially striking properties. High carrier mobility [1], electric field tuneable superconductivity [2] and magnetic effects [3], have been found. Here we show that an orbital reconstruction is underlying the generation of the electron gas at the LaAlO3/SrTiO3 n-type interface. Our results are based on extensive investigations of the electronic properties and of the orbital structure of the interface using X-ray Absorption Spectroscopy. In particular we find that the degeneracy of the Ti 3d states is fully removed, and that the Ti 3dxy levels become the first available states for conducting electrons.
We elucidate the thermodynamics of sodium (Na) intercalation into the sodium super-ionic conductor (NaSICON)-type electrode, Na$_x$V$_2$(PO$_4$)$_3$, for promising Na-ion batteries with high-power density. This is the first report of a computational temperature-composition phase diagram of the NaSICON-type electrode Na$_x$V$_2$(PO$_4$)$_3$. We identify two thermodynamically stable phases at the compositions Na$_2$V$_2$(PO$_4$)$_3$ and Na$_{3.5}$V$_2$(PO$_4$)$_3$, and their structural features are described for the first time based on our computational analysis. We unveil the crystal-structure and the electronic-structure origins of the ground-state compositions associated with specific Na/vacancy arrangements, which are driven by charge orderings on the vanadium sites. These results are significant for the optimization of high-energy and power densities electrodes for sustainable Na-ion batteries
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا