ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconductivity in the Orbital Degenerate Model for Heavy Fermion Systems

114   0   0.0 ( 0 )
 نشر من قبل Tetsuya Takimoto
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetism and superconductivity of new heavy fermion compounds CeTIn$_5$ (T=Co, Rh and Ir) are investigated by applying fluctuation exchange approximation to an orbital degenerate Hubbard model. The superconducting phase with $d_{x^2-y^2}$-symmetry is found to appear next to the antiferromagnetic phase with increasing the orbital splitting energy. The present theory suggests that the orbital splitting energy plays a key role of controlling parameter for the quantum phase transitions in the heavy fermion system.

قيم البحث

اقرأ أيضاً

Superconductivity in lanthanide- and actinide-based heavy-fermion metals can have different microscopic origins. Among others, Cooper pair formation based on fluctuations of the valence, of the quadrupole moment or of the spin of the localized 4f/5f shell have been proposed. Spin-fluctuation mediated superconductivity in CeCu2Si2 was demonstrated by inelastic neutron scattering to exist in the vicinity of a spin-density-wave quantum critical point. The isostructural HF compound YbRh2Si2 which is prototypical for a Kondo-breakdown quantum critical point has so far not shown any sign of superconductivity down to approximately 10mK. In contrast, results of de-Haas-van-Alphen experiments by Shishido et al. (J. Phys. Soc. Jpn. 74, 1103 (2005)) suggest superconductivity in CeRhIn5 close to an antiferromagnetic quantum critical point beyond the spin-density-wave type, at which the Kondo effect breaks down. For the related compound CeCoIn5 however, a field-induced quantum critical point of spin-density-wave type is extrapolated to exist inside the superconducting phase.
Understanding the origin of superconductivity in strongly correlated electron systems continues to be at the forefront of unsolved problems in all of physics. Among the heavy f-electron systems, CeCoIn5 is one of the most fascinating, as it shares ma ny of the characteristics of correlated d-electron high-Tc cuprate and pnictide superconductors, including the competition between antiferromagnetism and superconductivity. While there has been evidence for unconventional pairing in this compound, high-resolution spectroscopic measurements of the superconducting state have been lacking. Previously, we have used high-resolution scanning tunneling microscopy techniques to visualize the emergence of heavy-fermion excitations in CeCoIn5 and demonstrate the composite nature of these excitations well above Tc. Here we extend these techniques to much lower temperatures to investigate how superconductivity develops within a strongly correlated band of composite excitations. We find the spectrum of heavy excitations to be strongly modified just prior to the onset of superconductivity by a suppression of the spectral weight near the Fermi energy, reminiscent of the pseudogap state in the cuprates. By measuring the response of superconductivity to various perturbations, through both quasiparticle interference and local pair-breaking experiments, we demonstrate the nodal d-wave character of superconducting pairing in CeCoIn5.
99 - Genfu hen 2002
We succeeded in growing a single crystal of Ce2CoIn8 by the flux method. The results of specific heat and electrical resistivity measurements indicate that Ce2CoIn8 is a heavy-fermion superconductor below 0.4 K with an electronic specific heat coefficient gamma as large as 500 mJ/K^2mol-Ce.
A key aspect of unconventional pairing by the antiferromagnetic spin-fluctuation mechanism is that the superconducting energy gap must have opposite sign on different parts of the Fermi surface. Recent observations of non-nodal gap structure in the h eavy-fermion superconductor CeCu$_2$Si$_2$ were then very surprising, given that this material has long been considered a prototypical example of a superconductor where the Cooper pairing is magnetically mediated. Here we present a study of the effect of controlled point defects, introduced by electron irradiation, on the temperature-dependent magnetic penetration depth $lambda(T)$ in CeCu$_2$Si$_2$. We find that the fully-gapped state is robust against disorder, demonstrating that low-energy bound states, expected for sign-changing gap structures, are not induced by nonmagnetic impurities. This provides bulk evidence for $s_{++}$-wave superconductivity without sign reversal.
We use the spin-fermion model to describe the CuO$_2$ planes of the high-Tc superconductors. Using a large wavelength approach, we show that the ferromagnetic component of the Cu spin fluctuations couple to the oxygen holes producing a pairing intera ction that leads to a superconducting gap whose symmetry is determined by the anisotropy of the Kondo interaction. We calculate Tc as a function of the hole concentration in a mean-field approximation and our numerical results are in good agreement with the experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا