ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of Superconductivity in Heavy-Fermion Compounds of Ce2CoIn8

100   0   0.0 ( 0 )
 نشر من قبل I. Sakamoto
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Genfu hen




اسأل ChatGPT حول البحث

We succeeded in growing a single crystal of Ce2CoIn8 by the flux method. The results of specific heat and electrical resistivity measurements indicate that Ce2CoIn8 is a heavy-fermion superconductor below 0.4 K with an electronic specific heat coefficient gamma as large as 500 mJ/K^2mol-Ce.



قيم البحث

اقرأ أيضاً

Superconductivity in lanthanide- and actinide-based heavy-fermion metals can have different microscopic origins. Among others, Cooper pair formation based on fluctuations of the valence, of the quadrupole moment or of the spin of the localized 4f/5f shell have been proposed. Spin-fluctuation mediated superconductivity in CeCu2Si2 was demonstrated by inelastic neutron scattering to exist in the vicinity of a spin-density-wave quantum critical point. The isostructural HF compound YbRh2Si2 which is prototypical for a Kondo-breakdown quantum critical point has so far not shown any sign of superconductivity down to approximately 10mK. In contrast, results of de-Haas-van-Alphen experiments by Shishido et al. (J. Phys. Soc. Jpn. 74, 1103 (2005)) suggest superconductivity in CeRhIn5 close to an antiferromagnetic quantum critical point beyond the spin-density-wave type, at which the Kondo effect breaks down. For the related compound CeCoIn5 however, a field-induced quantum critical point of spin-density-wave type is extrapolated to exist inside the superconducting phase.
Understanding the origin of superconductivity in strongly correlated electron systems continues to be at the forefront of unsolved problems in all of physics. Among the heavy f-electron systems, CeCoIn5 is one of the most fascinating, as it shares ma ny of the characteristics of correlated d-electron high-Tc cuprate and pnictide superconductors, including the competition between antiferromagnetism and superconductivity. While there has been evidence for unconventional pairing in this compound, high-resolution spectroscopic measurements of the superconducting state have been lacking. Previously, we have used high-resolution scanning tunneling microscopy techniques to visualize the emergence of heavy-fermion excitations in CeCoIn5 and demonstrate the composite nature of these excitations well above Tc. Here we extend these techniques to much lower temperatures to investigate how superconductivity develops within a strongly correlated band of composite excitations. We find the spectrum of heavy excitations to be strongly modified just prior to the onset of superconductivity by a suppression of the spectral weight near the Fermi energy, reminiscent of the pseudogap state in the cuprates. By measuring the response of superconductivity to various perturbations, through both quasiparticle interference and local pair-breaking experiments, we demonstrate the nodal d-wave character of superconducting pairing in CeCoIn5.
We present a systematic ^{115}In NQR study on the heavy fermion compounds CeRh_{1-x}Ir_xIn_5 (x=0.25, 0.35, 0.45, 0.5, 0.55 and 0.75). The results provide strong evidence for the microscopic coexistence of antiferromagnetic (AF) order and superconduc tivity (SC) in the range of 0.35 leq x leq 0.55. Specifically, for x=0.5, T_N is observed at 3 K with a subsequent onset of superconductivity at T_c=0.9 K. T_c reaches a maximum (0.94 K) at x=0.45 where T_N is found to be the highest (4.0 K). Detailed analysis of the measured spectra indicate that the same electrons participate in both SC and AF order. The nuclear spin-lattice relaxation rate 1/T_1 shows a broad peak at T_N and follows a T^3 variation below T_c, the latter property indicating unconventional SC as in CeIrIn_5 (T_c=0.4 K). We further find that, in the coexistence region, the T^3 dependence of 1/T_1 is replaced by a T-linear variation below Tsim 0.4 K, with the value frac{(T_1)_{T_c}}{(T_1)_{low-T}} increasing with decreasing x, likely due to low-lying magnetic excitations associated with the coexisting magnetism.
This review discusses the heavy-fermion superconductivity in Ce- and U-based compounds crystallizing in the body-centered tetragonal ThCr2Si2 structure. Special attention will be paid to the theoretical background of these systems which are located close to a magnetic instability.
A key aspect of unconventional pairing by the antiferromagnetic spin-fluctuation mechanism is that the superconducting energy gap must have opposite sign on different parts of the Fermi surface. Recent observations of non-nodal gap structure in the h eavy-fermion superconductor CeCu$_2$Si$_2$ were then very surprising, given that this material has long been considered a prototypical example of a superconductor where the Cooper pairing is magnetically mediated. Here we present a study of the effect of controlled point defects, introduced by electron irradiation, on the temperature-dependent magnetic penetration depth $lambda(T)$ in CeCu$_2$Si$_2$. We find that the fully-gapped state is robust against disorder, demonstrating that low-energy bound states, expected for sign-changing gap structures, are not induced by nonmagnetic impurities. This provides bulk evidence for $s_{++}$-wave superconductivity without sign reversal.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا