ترغب بنشر مسار تعليمي؟ اضغط هنا

From the spin-fermion model to anisotropic superconductivity

60   0   0.0 ( 0 )
 نشر من قبل Lizardo H. C. M. Nunes
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use the spin-fermion model to describe the CuO$_2$ planes of the high-Tc superconductors. Using a large wavelength approach, we show that the ferromagnetic component of the Cu spin fluctuations couple to the oxygen holes producing a pairing interaction that leads to a superconducting gap whose symmetry is determined by the anisotropy of the Kondo interaction. We calculate Tc as a function of the hole concentration in a mean-field approximation and our numerical results are in good agreement with the experiments.

قيم البحث

اقرأ أيضاً

Superconductivity in lanthanide- and actinide-based heavy-fermion metals can have different microscopic origins. Among others, Cooper pair formation based on fluctuations of the valence, of the quadrupole moment or of the spin of the localized 4f/5f shell have been proposed. Spin-fluctuation mediated superconductivity in CeCu2Si2 was demonstrated by inelastic neutron scattering to exist in the vicinity of a spin-density-wave quantum critical point. The isostructural HF compound YbRh2Si2 which is prototypical for a Kondo-breakdown quantum critical point has so far not shown any sign of superconductivity down to approximately 10mK. In contrast, results of de-Haas-van-Alphen experiments by Shishido et al. (J. Phys. Soc. Jpn. 74, 1103 (2005)) suggest superconductivity in CeRhIn5 close to an antiferromagnetic quantum critical point beyond the spin-density-wave type, at which the Kondo effect breaks down. For the related compound CeCoIn5 however, a field-induced quantum critical point of spin-density-wave type is extrapolated to exist inside the superconducting phase.
Magnetism and superconductivity of new heavy fermion compounds CeTIn$_5$ (T=Co, Rh and Ir) are investigated by applying fluctuation exchange approximation to an orbital degenerate Hubbard model. The superconducting phase with $d_{x^2-y^2}$-symmetry i s found to appear next to the antiferromagnetic phase with increasing the orbital splitting energy. The present theory suggests that the orbital splitting energy plays a key role of controlling parameter for the quantum phase transitions in the heavy fermion system.
Understanding the origin of superconductivity in strongly correlated electron systems continues to be at the forefront of unsolved problems in all of physics. Among the heavy f-electron systems, CeCoIn5 is one of the most fascinating, as it shares ma ny of the characteristics of correlated d-electron high-Tc cuprate and pnictide superconductors, including the competition between antiferromagnetism and superconductivity. While there has been evidence for unconventional pairing in this compound, high-resolution spectroscopic measurements of the superconducting state have been lacking. Previously, we have used high-resolution scanning tunneling microscopy techniques to visualize the emergence of heavy-fermion excitations in CeCoIn5 and demonstrate the composite nature of these excitations well above Tc. Here we extend these techniques to much lower temperatures to investigate how superconductivity develops within a strongly correlated band of composite excitations. We find the spectrum of heavy excitations to be strongly modified just prior to the onset of superconductivity by a suppression of the spectral weight near the Fermi energy, reminiscent of the pseudogap state in the cuprates. By measuring the response of superconductivity to various perturbations, through both quasiparticle interference and local pair-breaking experiments, we demonstrate the nodal d-wave character of superconducting pairing in CeCoIn5.
We review application of the SU(4) model of strongly-correlated electrons to cuprate and iron-based superconductors. A minimal self-consistent generalization of BCS theory to incorporate antiferromagnetism on an equal footing with pairing and strong Coulomb repulsion is found to account systematically for the major features of high-temperature superconductivity, with microscopic details of the parent compounds entering only parametrically. This provides a systematic procedure to separate essential from peripheral, suggesting that many features exhibited by the high-$Ttsub c$ data set are of interest in their own right but are not central to the superconducting mechanism. More generally, we propose that the surprisingly broad range of conventional and unconventional superconducting and superfluid behavior observed across many fields of physics results from the systematic appearance of similar algebraic structures for the emergent effective Hamiltonians, even though the microscopic Hamiltonians of the corresponding parent states may differ radically from each other.
The weak-coupling renormalization group method is an asymptotically exact method to find superconducting instabilities of a lattice model of correlated electrons. Here we extend it to spin-orbit coupled lattice systems and study the emerging supercon ducting phases of the Rashba-Hubbard model. Since Rashba type spin-orbit coupling breaks inversion symmetry, the arising superconducting phases may be a mixture of spin-singlet and spin-triplet states. We study the two-dimensional square lattice as a paradigm and discuss the symmetry properties of the arising spin-orbit coupled superconducting states including helical spin-triplet superconductivity. We also discuss how to best deal with split energy bands within a method which restricts paired electrons to momenta on the Fermi surface.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا