ترغب بنشر مسار تعليمي؟ اضغط هنا

Small-Worlds, Mazes and Random Walks

101   0   0.0 ( 0 )
 نشر من قبل Octavio Miramontes
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We establish a relationship between the Small-World behavior found in complex networks and a family of Random Walks trajectories using, as a linking bridge, a maze iconography. Simple methods to generate mazes using Random Walks are discussed along with related issues and it is explained how to interpret mazes as graphs and loops as shortcuts. Small-World behavior was found to be non-logarithmic but power-law in this model, we discuss the reason for this peculiar scaling



قيم البحث

اقرأ أيضاً

The time that waves spend inside 1D random media with the possibility of performing Levy walks is experimentally and theoretically studied. The dynamics of quantum and classical wave diffusion has been investigated in canonical disordered systems via the delay time. We show that a wide class of disorder--Levy disorder--leads to strong random fluctuations of the delay time; nevertheless, some statistical properties such as the tail of the distribution and the average of the delay time are insensitive to Levy walks. Our results reveal a universal character of wave propagation that goes beyond standard Brownian wave-diffusion.
We investigate the critical properties of the Ising model in two dimensions on {it directed} small-world lattice with quenched connectivity disorder. The disordered system is simulated by applying the Monte Carlo update heat bath algorithm. We calcul ate the critical temperature, as well as the critical exponents $gamma/ u$, $beta/ u$, and $1/ u$ for several values of the rewiring probability $p$. We find that this disorder system does not belong to the same universality class as the regular two-dimensional ferromagnetic model. The Ising model on {it directed} small-world lattices presents in fact a second-order phase transition with new critical exponents which do not dependent of $p$, but are identical to the exponents of the Ising model and the spin-1 Blume-Capel model on {it directed} small-world network.
The principle characteristics of biased greedy random walks (BGRWs) on two-dimensional lattices with real-valued quenched disorder on the lattice edges are studied. Here, the disorder allows for negative edge-weights. In previous studies, considering the negative-weight percolation (NWP) problem, this was shown to change the universality class of the existing, static percolation transition. In the presented study, four different types of BGRWs and an algorithm based on the ant colony optimization (ACO) heuristic were considered. Regarding the BGRWs, the precise configurations of the lattice walks constructed during the numerical simulations were influenced by two parameters: a disorder parameter rho that controls the amount of negative edge weights on the lattice and a bias strength B that governs the drift of the walkers along a certain lattice direction. Here, the pivotal observable is the probability that, after termination, a lattice walk exhibits a total negative weight, which is here considered as percolating. The behavior of this observable as function of rho for different bias strengths B is put under scrutiny. Upon tuning rho, the probability to find such a feasible lattice walk increases from zero to one. This is the key feature of the percolation transition in the NWP model. Here, we address the question how well the transition point rho_c, resulting from numerically exact and static simulations in terms of the NWP model can be resolved using simple dynamic algorithms that have only local information available, one of the basic questions in the physics of glassy systems.
160 - K. Takeda , I. Ichinose 2003
S=1/2 quantum spin chains and ladders with random exchange coupling are studied by using an effective low-energy field theory and transfer matrix methods. Effects of the nonlocal correlations of exchange couplings are investigated numerically. In par ticular we calculate localization length of magnons, density of states, correlation functions and multifractal exponents as a function of the correlation length of the exchange couplings. As the correlation length increases, there occurs a phase transition and the above quantities exhibit different behaviors in two phases. This suggests that the strong-randomness fixed point of the random spin chains and random-singlet state get unstable by the long-range correlations of the random exchange couplings.
In their seminal paper on scattering by an inhomogeneous solid, Debye and coworkers proposed a simple exponentially decaying function for the two-point correlation function of an idealized class of two-phase random media. Such {it Debye random media} , which have been shown to be realizable, are singularly distinct from all other models of two-phase media in that they are entirely defined by their one- and two-point correlation functions. To our knowledge, there has been no determination of other microstructural descriptors of Debye random media. In this paper, we generate Debye random media in two dimensions using an accelerated Yeong-Torquato construction algorithm. We then ascertain microstructural descriptors of the constructed media, including their surface correlation functions, pore-size distributions, lineal-path function, and chord-length probability density function. Accurate semi-analytic and empirical formulas for these descriptors are devised. We compare our results for Debye random media to those of other popular models (overlapping disks and equilibrium hard disks), and find that the former model possesses a wider spectrum of hole sizes, including a substantial fraction of large holes. Our algorithm can be applied to generate other models defined by their two-point correlation functions, and their other microstructural descriptors can be determined and analyzed by the procedures laid out here.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا