ترغب بنشر مسار تعليمي؟ اضغط هنا

Generation and Structural Characterization of Debye Random Media

85   0   0.0 ( 0 )
 نشر من قبل Zheng Ma
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In their seminal paper on scattering by an inhomogeneous solid, Debye and coworkers proposed a simple exponentially decaying function for the two-point correlation function of an idealized class of two-phase random media. Such {it Debye random media}, which have been shown to be realizable, are singularly distinct from all other models of two-phase media in that they are entirely defined by their one- and two-point correlation functions. To our knowledge, there has been no determination of other microstructural descriptors of Debye random media. In this paper, we generate Debye random media in two dimensions using an accelerated Yeong-Torquato construction algorithm. We then ascertain microstructural descriptors of the constructed media, including their surface correlation functions, pore-size distributions, lineal-path function, and chord-length probability density function. Accurate semi-analytic and empirical formulas for these descriptors are devised. We compare our results for Debye random media to those of other popular models (overlapping disks and equilibrium hard disks), and find that the former model possesses a wider spectrum of hole sizes, including a substantial fraction of large holes. Our algorithm can be applied to generate other models defined by their two-point correlation functions, and their other microstructural descriptors can be determined and analyzed by the procedures laid out here.



قيم البحث

اقرأ أيضاً

The time that waves spend inside 1D random media with the possibility of performing Levy walks is experimentally and theoretically studied. The dynamics of quantum and classical wave diffusion has been investigated in canonical disordered systems via the delay time. We show that a wide class of disorder--Levy disorder--leads to strong random fluctuations of the delay time; nevertheless, some statistical properties such as the tail of the distribution and the average of the delay time are insensitive to Levy walks. Our results reveal a universal character of wave propagation that goes beyond standard Brownian wave-diffusion.
The principle characteristics of biased greedy random walks (BGRWs) on two-dimensional lattices with real-valued quenched disorder on the lattice edges are studied. Here, the disorder allows for negative edge-weights. In previous studies, considering the negative-weight percolation (NWP) problem, this was shown to change the universality class of the existing, static percolation transition. In the presented study, four different types of BGRWs and an algorithm based on the ant colony optimization (ACO) heuristic were considered. Regarding the BGRWs, the precise configurations of the lattice walks constructed during the numerical simulations were influenced by two parameters: a disorder parameter rho that controls the amount of negative edge weights on the lattice and a bias strength B that governs the drift of the walkers along a certain lattice direction. Here, the pivotal observable is the probability that, after termination, a lattice walk exhibits a total negative weight, which is here considered as percolating. The behavior of this observable as function of rho for different bias strengths B is put under scrutiny. Upon tuning rho, the probability to find such a feasible lattice walk increases from zero to one. This is the key feature of the percolation transition in the NWP model. Here, we address the question how well the transition point rho_c, resulting from numerically exact and static simulations in terms of the NWP model can be resolved using simple dynamic algorithms that have only local information available, one of the basic questions in the physics of glassy systems.
We study relaxation dynamics of a three dimensional elastic manifold in random potential from a uniform initial condition by numerically solving the Langevin equation.We observe growth of roughness of the system up to larger wavelengths with time.We analyze structure factor in detail and find a compact scaling ansatz describing two distinct time regimes and crossover between them. We find short time regime corresponding to length scale smaller than the Larkin length $L_c$ is well described by the Larkin model which predicts a power law growth of domain size $L(t)$. Longer time behavior exhibits the random manifold regime with slower growth of $L(t)$.
Theory of Random Matrix Ensembles have proven to be a useful tool in the study of the statistical distribution of energy or transmission levels of a wide variety of physical systems. We give an overview of certain q-generalizations of the Random Matr ix Ensembles, which were first introduced in connection with the statistical description of disordered quantum conductors.
The local magnetization in the one-dimensional random-field Ising model is essentially the sum of two effective fields with multifractal probability measure. The probability measure of the local magnetization is thus the convolution of two multifract als. In this paper we prove relations between the multifractal properties of two measures and the multifractal properties of their convolution. The pointwise dimension at the boundary of the support of the convolution is the sum of the pointwise dimensions at the boundary of the support of the convoluted measures and the generalized box dimensions of the convolution are bounded from above by the sum of the generalized box dimensions of the convoluted measures. The generalized box dimensions of the convolution of Cantor sets with weights can be calculated analytically for certain parameter ranges and illustrate effects we also encounter in the case of the measure of the local magnetization. Returning to the study of this measure we apply the general inequalities and present numerical approximations of the D_q-spectrum. For the first time we are able to obtain results on multifractal properties of a physical quantity in the one-dimensional random-field Ising model which in principle could be measured experimentally. The numerically generated probability densities for the local magnetization show impressively the gradual transition from a monomodal to a bimodal distribution for growing random field strength h.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا