ﻻ يوجد ملخص باللغة العربية
S=1/2 quantum spin chains and ladders with random exchange coupling are studied by using an effective low-energy field theory and transfer matrix methods. Effects of the nonlocal correlations of exchange couplings are investigated numerically. In particular we calculate localization length of magnons, density of states, correlation functions and multifractal exponents as a function of the correlation length of the exchange couplings. As the correlation length increases, there occurs a phase transition and the above quantities exhibit different behaviors in two phases. This suggests that the strong-randomness fixed point of the random spin chains and random-singlet state get unstable by the long-range correlations of the random exchange couplings.
In the previous paper, we studied the random-mass Dirac fermion in one dimension by using the transfer-matrix methods and by introducing an imaginary vector potential in order to calculate the localization lengths. Especially we considered effects of
We study the infinite-temperature properties of an infinite sequence of random quantum spin chains using a real-space renormalization group approach, and demonstrate that they exhibit non-ergodic behavior at strong disorder. The analysis is convenien
In the previous paper, we studied the random-mass Dirac fermion in one dimension by using the transfer-matrix methods. We furthermore employed the imaginary vector potential methods for calculating the localization lengths. Especially we investigated
We study the nonequilibrium dynamics of random spin chains that remain integrable (i.e., solvable via Bethe ansatz): because of correlations in the disorder, these systems escape localization and feature ballistically spreading quasiparticles. We der
We investigate thermodynamic phase transitions of the joint presence of spin glass (SG) and random field (RF) using a random graph model that allows us to deal with the quenched disorder. Therefore, the connectivity becomes a controllable parameter i