ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-Rate-Transformation framework for targeted assembly of short-range attractive colloidal suspensions

78   0   0.0 ( 0 )
 نشر من قبل Safa Jamali
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The aggregation of attractive colloids has been extensively studied from both theoretical and experimental perspectives as the fraction of solid particles is changed, and the range, type and strength of attractive or repulsive forces between particles varies. The resulting gels consisting of disordered assemblies of attractive colloidal particles, have also been investigated with regards to percolation, phase separation, and the mechanical characteristics of the resulting fractal networks. Despite tremendous progress in our understanding of the gelation process, and the exploration of different routes for arresting the dynamics of attractive colloids, the complex interplay between convective transport processes and many-body effects in such systems has limited our ability to drive the system towards a specific configuration. Here we study a model attractive colloidal system over a wide range of particle characteristics and flow conditions undergoing aggregation far from equilibrium. The complex multiscale dynamics of the system can be understood using a Time-Rate-Transformation diagram adapted from understanding of materials processing in block copolymers, supercooled liquids and much stiffer glassy metals to direct targeted assembly of attractive colloidal particles.

قيم البحث

اقرأ أيضاً

We report on a comprehensive theory-simulation-experimental study of collective and self-diffusion in suspensions of charge-stabilized colloidal spheres. In simulation and theory, the spheres interact by a hard-core plus screened Coulomb pair potenti al. Intermediate and self-intermediate scattering functions are calculated by accelerated Stokesian Dynamics simulations where hydrodynamic interactions (HIs) are fully accounted for. The study spans the range from the short-time to the colloidal long-time regime. Additionally, Brownian Dynamics simulation and mode-coupling theory (MCT) results are generated where HIs are neglected. It is shown that HIs enhance collective and self-diffusion at intermediate and long times, whereas at short times self-diffusion, and for certain wavenumbers also collective diffusion, are slowed down. MCT significantly overestimate the slowing influence of dynamic particle caging. The simulated scattering functions are in decent agreement with our dynamic light scattering (DLS) results for suspensions of charged silica spheres. Simulation and theoretical results are indicative of a long-time exponential decay of the intermediate scattering function. The approximate validity of a far-reaching time-wavenumber factorization of the scattering function is shown to be a consequence of HIs. Our study of collective diffusion is amended by simulation and theoretical results for the self-intermediate scattering function and the particle mean squared displacement (MSD). Since self-diffusion is not assessed in DLS measurements, a method to deduce the MSD approximately in DLS is theoretically validated.
Electrostatic interactions play an important role in numerous self-assembly phenomena, including colloidal aggregation. Although colloids typically have a dielectric constant that differs from the surrounding solvent, the effective interactions that arise from inhomogeneous polarization charge distributions are generally neglected in theoretical and computational studies. We introduce an efficient technique to resolve polarization charges in dynamical dielectric geometries, and demonstrate that dielectric effects emph{qualitatively} alter the predicted self-assembled structures, with surprising colloidal strings arising from many-body effects.
An ultra-fast quench is applied to binary mixtures of superparamagnetic colloidal particles confined at a two-dimensional water-air interface by a sudden increase of an external magnetic field. This quench realizes a virtually instantaneous cooling w hich is impossible in molecular systems. Using real-space experiments, the relaxation behavior after the quench is explored. Local crystallites with triangular and square symmetry are formed on different time scales and the correlation peak amplitude of the small particles evolves nonmonotonically in time in agreement with Brownian dynamics computer simulations.
In a microrheological set-up a single probe particle immersed in a complex fluid is exposed to a strong external force driving the system out of equilibrium. Here, we elaborate analytically the time-dependent response of a probe particle in a dilute suspension of Brownian particles to a large step-force, exact in first order of the density of the bath particles. The time-dependent drift velocity approaches its stationary state value exponentially fast for arbitrarily small driving in striking contrast to the power-law prediction of linear response encoded in the long-time tails of the velocity autocorrelation function. We show that the stationary-state behavior depends nonanalytically on the driving force and connect this behavior to the persistent correlations in the equilibrium state. We argue that this relation holds generically. Furthermore, we elaborate that the fluctuations in the direction of the force display transient superdiffusive behavior.
From paints to food products, solvent evaporation is ubiquitous and critically impacts product rheological properties. It affects Newtonian fluids by concentrating any non-volatile components and viscoelastic materials, which hardens up. In both of t hese cases, solvent evaporation leads to a change in the sample volume, which makes any rheological measurements particularly challenging with traditional shear geometries. Here we show that the rheological properties of a sample experiencing `slow evaporation can be monitored in a time-resolved fashion by using a zero normal-force controlled protocol in a parallel-plate geometry. Solvent evaporation from the sample leads to a decrease of the normal force, which is compensated at all times by a decrease of the gap height between the plates. As a result, the sample maintains a constant contact area with the plates despite the significant decrease of its volume. We validate the method under both oscillatory and continuous shear by accurately monitoring the viscosity of water-glycerol mixtures experiencing evaporation and a relative volume decrease as large as 70%. Moreover, we apply this protocol to dehydrating suspensions. Specifically, we monitor a dispersion of charged silica nanoparticles undergoing a glass transition induced by evaporation. While the decrease in gap height provides a direct estimate of the increasing particle volume fraction, oscillatory and continuous shear measurements allow us to monitor the suspensions evolving viscoelastic properties in real-time. Overall, our study shows that a zero normal-force protocol provides a simple approach to bulk and time-resolved rheological characterization for systems experiencing slow volume variations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا