ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconducting Properties of Atomic-Disordered Compound MgCNi_3

139   0   0.0 ( 0 )
 نشر من قبل Yuri Skryabin
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The effect of radiation-induced disordering in a nuclear reactor (fast neutrons fluence Phi = 5cdot10^{19} cm^2, T_{text{irr}} = 340 K) on resistivity rho, superconducting transition temperature T_C and upper critical field H_{C_2} of polycrystalline MgCNi_3 samples was investigated. It was found that T_C decreases under irradiation from 6.5 to 2.9 K and completely recovers after annealing at 600 ^circC. Temperature dependences rho(T) are characteristic of compounds with strong electron-phonon interaction. The dH_{C_2}/dT behaviour testifies to a considerable decrease in density of electronic state at Fermi level N(E_F) in the course of disordering.

قيم البحث

اقرأ أيضاً

Low-energy rattling modes and their effects on superconductivity are studied in the cage compound GaxV2Al20. A series of polycrystalline samples of 0 < x =< 0.6 are examined through resistivity, magnetic susceptibility, and heat capacity measurements . A weak-coupling BCS superconductivity is observed below Tc = 1.4-1.7 K for all the samples. For small Ga contents below 0.20, approximately 30% of the cages are occupied by rattling Al atoms having an Einstein temperature TE of 23 K, probably with most Ga atoms substituting for the cage-forming Al atoms. For higher Ga contents, approximately 0.05 Ga and 0.25-0.35 Al atoms coexist statistically inside the cages and behave as rattlers with TE ~ 8 and 23 K, respectively. A significant effect of Ga rattling on the superconductivity is clearly evidenced by the observation of a sharp rise in Tc by 8% at x = 0.20 when 0.05 Ga atoms are introduced into the case. Probably, the electron-phonon interaction is significantly enhanced by an additional contribution to the phonon density of states from the extremely low energy rattling modes of Ga atoms. In addition, a large softening of the acoustic modes is observed for x => 0.20, suggesting that the cage itself becomes anomalously soft in the presence of low-energy Ga rattling modes.
293 - P. Zheng , J. L. Luo , G. T. Liu 2005
We present the optical reflectance and conductivity spectra for non-oxide antiperovskite superconductor $MgCNi_{3}$ at different temperatures. The reflectance drops gradually over a large energy scale up to 33,000 cm$^{-1}$, with the presence of seve ral wiggles. The reflectance has slight temperature dependence at low frequency but becomes temperature independent at high frequency. The optical conductivity shows a Drude response at low frequencies and four broad absorption features in the frequency range from 600 $cm^{-1}$ to 33,000 $cm^{-1}$. We illustrate that those features can be well understood from the intra- and interband transitions between different components of Ni 3d bands which are hybridized with C 2p bands. There is a good agreement between our experimental data and the first-principle band structure calculations.
We have grown superconducting TiN films by atomic layer deposition with thicknesses ranging from 6 to 89 nm. This deposition method allows us to tune the resistivity and critical temperature by controlling the film thickness. The microwave properties are measured, using a coplanar-waveguide resonator, and we find internal quality factors above a million, high sheet inductances (5.2-620 pH), and pulse response times up to 100 mu s. The high normal state resistivity of the films (> 100 muOmega cm) affects the superconducting state and thereby the electrodynamic response. The microwave response is modeled using a quasiparticle density of states modified with an effective pair-breaker,consistently describing the measured temperature dependence of the quality factor and the resonant frequency.
The nonsymmorphic Zr$_{2}$Ir alloy is a possible topological semimetal candidate material and as such may be part of an exotic class of superconductors. Zr$_{2}$Ir is a superconductor with a transition temperature of 7.4 K with critical fields of 19. 6(3) mT and 3.79(3) T, as determined by heat capacity and magnetisation. Zero field muon spin relaxation measurements show that time-reversal symmetry is preserved in these materials. The specific heat and transverse field muon spin rotation measurements rule out any possibility to have a nodal or anisotropic superconducting gap, revealing a conventional s-wave nature in the superconducting ground state. Therefore, this system is found to be conventional nonsymmorphic superconductor, with time-reversal symmetry being preserved and an isotropic superconducting gap.
Particles occupying sites of a random lattice present density fluctuations at all length scales. It has been proposed that increasing interparticle interactions reduces long range density fluctuations, deviating from random behaviour. This leads to p ower laws in the structure factor and the number variance that can be used to characterize deviations from randomness which eventually lead to disordered hyperuniformity. It is not yet fully clear how to link density fluctuations with interactions in a disordered hyperuniform system. Interactions between superconducting vortices are very sensitive to vortex pinning, to the crystal structure of the superconductor and to the value of the magnetic field. This creates lattices with different degrees of disorder. Here we study disordered vortex lattices in several superconducting compounds (Co-doped NbSe$_2$, LiFeAs and CaKFe$_4$As$_4$) and in two amorphous W-based thin films, one with strong nanostructured pinning (W-film-1) and another one with weak or nearly absent pinning (W-film-2). We calculate for each case the structure factor and number variance and compare to calculations on an interacting set of partially pinned particles. We find that random density fluctuations appear when pinning overcomes interactions and show that the suppression of density fluctuations is indeed correlated to the presence of interactions. Furthermore, we find that we can describe all studied vortex lattices within a single framework consisting of a continous deviation from hyperuniformity towards random distributions when increasing the strength of pinning with respect to the intervortex interaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا