ﻻ يوجد ملخص باللغة العربية
The effect of radiation-induced disordering in a nuclear reactor (fast neutrons fluence Phi = 5cdot10^{19} cm^2, T_{text{irr}} = 340 K) on resistivity rho, superconducting transition temperature T_C and upper critical field H_{C_2} of polycrystalline MgCNi_3 samples was investigated. It was found that T_C decreases under irradiation from 6.5 to 2.9 K and completely recovers after annealing at 600 ^circC. Temperature dependences rho(T) are characteristic of compounds with strong electron-phonon interaction. The dH_{C_2}/dT behaviour testifies to a considerable decrease in density of electronic state at Fermi level N(E_F) in the course of disordering.
Low-energy rattling modes and their effects on superconductivity are studied in the cage compound GaxV2Al20. A series of polycrystalline samples of 0 < x =< 0.6 are examined through resistivity, magnetic susceptibility, and heat capacity measurements
We present the optical reflectance and conductivity spectra for non-oxide antiperovskite superconductor $MgCNi_{3}$ at different temperatures. The reflectance drops gradually over a large energy scale up to 33,000 cm$^{-1}$, with the presence of seve
We have grown superconducting TiN films by atomic layer deposition with thicknesses ranging from 6 to 89 nm. This deposition method allows us to tune the resistivity and critical temperature by controlling the film thickness. The microwave properties
The nonsymmorphic Zr$_{2}$Ir alloy is a possible topological semimetal candidate material and as such may be part of an exotic class of superconductors. Zr$_{2}$Ir is a superconductor with a transition temperature of 7.4 K with critical fields of 19.
Particles occupying sites of a random lattice present density fluctuations at all length scales. It has been proposed that increasing interparticle interactions reduces long range density fluctuations, deviating from random behaviour. This leads to p