ﻻ يوجد ملخص باللغة العربية
Low-energy rattling modes and their effects on superconductivity are studied in the cage compound GaxV2Al20. A series of polycrystalline samples of 0 < x =< 0.6 are examined through resistivity, magnetic susceptibility, and heat capacity measurements. A weak-coupling BCS superconductivity is observed below Tc = 1.4-1.7 K for all the samples. For small Ga contents below 0.20, approximately 30% of the cages are occupied by rattling Al atoms having an Einstein temperature TE of 23 K, probably with most Ga atoms substituting for the cage-forming Al atoms. For higher Ga contents, approximately 0.05 Ga and 0.25-0.35 Al atoms coexist statistically inside the cages and behave as rattlers with TE ~ 8 and 23 K, respectively. A significant effect of Ga rattling on the superconductivity is clearly evidenced by the observation of a sharp rise in Tc by 8% at x = 0.20 when 0.05 Ga atoms are introduced into the case. Probably, the electron-phonon interaction is significantly enhanced by an additional contribution to the phonon density of states from the extremely low energy rattling modes of Ga atoms. In addition, a large softening of the acoustic modes is observed for x => 0.20, suggesting that the cage itself becomes anomalously soft in the presence of low-energy Ga rattling modes.
The effect of radiation-induced disordering in a nuclear reactor (fast neutrons fluence Phi = 5cdot10^{19} cm^2, T_{text{irr}} = 340 K) on resistivity rho, superconducting transition temperature T_C and upper critical field H_{C_2} of polycrystalline
We have examined the superconducting ground state properties of the caged type compound Sc$_5$Rh$_6$Sn$_{18}$ using magnetization, heat capacity, and muon-spin relaxation or rotation ($mu$SR) measurements. Magnetization measurements indicate type-II
We report on muon spin rotation/relaxation and $^{119}$Sn nuclear magnetic resonance (NMR) measurements to study the microscopic superconducting and magnetic properties of the Heusler compound with the highest superconducting transition temperature,
The nonsymmorphic Zr$_{2}$Ir alloy is a possible topological semimetal candidate material and as such may be part of an exotic class of superconductors. Zr$_{2}$Ir is a superconductor with a transition temperature of 7.4 K with critical fields of 19.
Microwave penetration depth $lambda$ and surface resistance at 27 GHz are measured in high quality crystals of KOs$_2$O$_6$. Firm evidence for fully-gapped superconductivity is provided from $lambda(T)$. Below the second transition at $T_{rm p}sim 8$