ترغب بنشر مسار تعليمي؟ اضغط هنا

Co-doped LaLa1-xSrxTiO3-d : A Diluted Magnetic Oxide System with High Curie Temperature

55   0   0.0 ( 0 )
 نشر من قبل Satishchandra B. Ogale
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Ferromagnetism is observed at and above room temperature in pulsed laser deposited epitaxial films of Co-doped Ti-based oxide perovskite (La1-xSrxTiO3-d). The system has the characteristics of an intrinsic diluted magnetic semiconductor (metal) at low concentrations (<~ 2 %), but develops inhomogeneity at higher cobalt concentrations. The films range from being opaque metallic to transparent semiconducting depending on the oxygen pressure during growth and are yet ferromagnetic.

قيم البحث

اقرأ أيضاً

152 - G. Herranz , R. Ranchal , M. Bibes 2005
We report on tunneling magnetoresistance (TMR) experiments that demonstrate the existence of a significant spin polarization in Co-doped (La,Sr)TiO3-d (Co-LSTO), a ferromagnetic diluted magnetic oxide system (DMOS) with high Curie temperature. These TMR experiments have been performed on magnetic tunnel junctions associating Co-LSTO and Co electrodes. Extensive structural analysis of Co-LSTO combining high-resolution transmission electron microscopy and Auger electron spectroscopy excluded the presence of Co clusters in the Co-LSTO layer and thus, the measured ferromagnetism and high spin polarization are intrinsic properties of this DMOS. Our results argue for the DMOS approach with complex oxide materials in spintronics.
The nature of a puzzling high temperature ferromagnetism of doped mixed-valent vanadium oxide nanotubes reported earlier by Krusin-Elbaum et al., Nature 431 (2004) 672, has been addressed by static magnetization, muon spin relaxation, nuclear magneti c and electron spin resonance spectroscopy techniques. A precise control of the charge doping was achieved by electrochemical Li intercalation. We find that it provides excess electrons, thereby increasing the number of interacting magnetic vanadium sites, and, at a certain doping level, yields a ferromagnetic-like response persisting up to room temperature. Thus we confirm the surprising previous results on the samples prepared by a completely different intercalation method. Moreover our spectroscopic data provide first ample evidence for the bulk nature of the effect. In particular, they enable a conclusion that the Li nucleates superparamagnetic nanosize spin clusters around the intercalation site which are responsible for the unusual high temperature ferromagnetism of vanadium oxide nanotubes.
We show for the system La1-xCexCoO3 (0.1 <= x <= 0.4) that it is possible to synthesize electron-doped cobaltites by the growth of epitaxial thin films. For La1-xCexCoO3, ferromagnetic order is observed within the entire doping range (with the maximu m of the Curie temperature, Tc, at x ca. 0.3), resulting in a magnetic phase diagram similar to that of hole-doped lanthanum cobaltites. The measured spin values strongly suggest an intermediate-spin state of the Co ions which has been also found in the hole-doped system. In contrast to the hole-doped material, however, where Tc is well above 200 K, we observe a strong suppression of the maximum Tc to about 22 K. This is likely to be caused by a considerable decrease of the Co3d - O2p hybridization. The observed intriguing magnetic properties are in agreement with previously reported theoretical results.
Occurrence of room temperature ferromagnetism is demonstrated in pulsed laser deposited thin films of Sn1-xCoxO2-d (x<0.3). Interestingly, films of Sn0.95Co0.05O2-d grown on R-plane sapphire not only exhibit ferromagnetism with a Curie temperature cl ose to 650 K, but also a giant magnetic moment of about 7 Bohr-Magneton/Co, not yet reported in any diluted magnetic semiconductor system. The films are semiconducting and optically highly transparent.
Here we report the synthesis of a bulk oxide diluted magnetic semiconductor (DMS) system La1-xSrxCu0.925Mn0.075SO (x=0, 0.025, 0.05, 0.075, and 0.1). As a wide band gap p-type oxide semiconductor, LaCuSO satisfies all the conditions forecasted theore tically to be a room temperature DMS. The Curie temperature (TC) is around 200K as x>0.05, which is among the highest TC record of known bulk DMS materials up to now. The system provides a rare example of oxide DMS system with p-type conduction, which is important for formation of high temperature spintronic devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا