ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatial survival probability for one-dimensional fluctuating interfaces in the steady state

74   0   0.0 ( 0 )
 نشر من قبل Chandan Dasgupta
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Satya N. Majumdar




اسأل ChatGPT حول البحث

We report numerical and analytic results for the spatial survival probability for fluctuating one-dimensional interfaces with Edwards-Wilkinson or Kardar-Parisi-Zhang dynamics in the steady state. Our numerical results are obtained from analysis of steady-state profiles generated by integrating a spatially discretized form of the Edwards-Wilkinson equation to long times. We show that the survival probability exhibits scaling behavior in its dependence on the system size and the `sampling interval used in the measurement for both `steady-state and `finite initial conditions. Analytic results for the scaling functions are obtained from a path-integral treatment of a formulation of the problem in terms of one-dimensional Brownian motion. A `deterministic approximation is used to obtain closed-form expressions for survival probabilities from the formally exact analytic treatment. The resulting approximate analytic results provide a fairly good description of the numerical data.



قيم البحث

اقرأ أيضاً

We report the results of numerical investigations of the steady-state (SS) and finite-initial-conditions (FIC) spatial persistence and survival probabilities for (1+1)--dimensional interfaces with dynamics governed by the nonlinear Kardar--Parisi--Zh ang (KPZ) equation and the linear Edwards--Wilkinson (EW) equation with both white (uncorrelated) and colored (spatially correlated) noise. We study the effects of a finite sampling distance on the measured spatial persistence probability and show that both SS and FIC persistence probabilities exhibit simple scaling behavior as a function of the system size and the sampling distance. Analytical expressions for the exponents associated with the power-law decay of SS and FIC spatial persistence probabilities of the EW equation with power-law correlated noise are established and numerically verified.
78 - J. Krug 1997
Numerical and analytic results for the exponent theta describing the decay of the first return probability of an interface to its initial height are obtained for a large class of linear Langevin equations. The models are parametrized by the dynamic r oughness exponent beta, with 0 < beta < 1; for beta = 1/2 the time evolution is Markovian. Using simulations of solid-on-solid models, of the discretized continuum equations as well as of the associated zero-dimensional stationary Gaussian process, we address two problems: The return of an initially flat interface, and the return to an initial state with fully developed steady state roughness. The two problems are shown to be governed by different exponents. For the steady state case we point out the equivalence to fractional Brownian motion, which has a return exponent theta_S = 1 - beta. The exponent theta_0 for the flat initial condition appears to be nontrivial. We prove that theta_0 to infty for beta to 0, theta_0 geq theta_S for beta < 1/2 and theta_0 leq theta_S for beta > 1/2, and calculate theta_{0,S} perturbatively to first order in an expansion around the Markovian case beta = 1/2. Using the exact result theta_S = 1 - beta, accurate upper and lower bounds on theta_0 can be derived which show, in particular, that theta_0 geq (1 - beta)^2/beta for small beta.
We derive universal bounds for the finite-time survival probability of the stochastic work extracted in steady-state heat engines. We also find estimates for the time-dependent thresholds that the stochastic work does not surpass with a prescribed pr obability. At long times, the tightest thresholds are proportional to the large deviation functions of stochastic entropy production. Our results, which entail an extension of martingale theory for entropy production, are tested with numerical simulations of a stochastic photoelectic device.
The persistence behavior for fluctuating steps on the $Si(111)$ $(sqrt3 times sqrt3)R30^{0} - Al$ surface was determined by analyzing time-dependent STM images for temperatures between 770 and 970K. The measured persistence probability follows a powe r law decay with an exponent of $theta=0.77 pm 0.03$. This is consistent with the value of $theta= 3/4$ predicted for attachment/detachment limited step kinetics. If the persistence analysis is carried out in terms of return to a fixed reference position, the measured persistence probability decays exponentially. Numerical studies of the Langevin equation used to model step motion corroborate the experimental observations.
124 - Vicente Garzo , Ricardo Brito , 2020
A linear stability analysis of the hydrodynamic equations of a model for confined quasi-two-dimensional granular gases is carried out. The stability analysis is performed around the homogeneous steady state (HSS) reached eventually by the system afte r a transient regime. In contrast to previous studies (which considered dilute or quasielastic systems), our analysis is based on the results obtained from the inelastic Enskog kinetic equation, which takes into account the (nonlinear) dependence of the transport coefficients and the cooling rate on dissipation and applies to moderate densities. As in earlier studies, the analysis shows that the HSS is linearly stable with respect to long enough wavelength excitations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا