ﻻ يوجد ملخص باللغة العربية
We report numerical and analytic results for the spatial survival probability for fluctuating one-dimensional interfaces with Edwards-Wilkinson or Kardar-Parisi-Zhang dynamics in the steady state. Our numerical results are obtained from analysis of steady-state profiles generated by integrating a spatially discretized form of the Edwards-Wilkinson equation to long times. We show that the survival probability exhibits scaling behavior in its dependence on the system size and the `sampling interval used in the measurement for both `steady-state and `finite initial conditions. Analytic results for the scaling functions are obtained from a path-integral treatment of a formulation of the problem in terms of one-dimensional Brownian motion. A `deterministic approximation is used to obtain closed-form expressions for survival probabilities from the formally exact analytic treatment. The resulting approximate analytic results provide a fairly good description of the numerical data.
We report the results of numerical investigations of the steady-state (SS) and finite-initial-conditions (FIC) spatial persistence and survival probabilities for (1+1)--dimensional interfaces with dynamics governed by the nonlinear Kardar--Parisi--Zh
Numerical and analytic results for the exponent theta describing the decay of the first return probability of an interface to its initial height are obtained for a large class of linear Langevin equations. The models are parametrized by the dynamic r
We derive universal bounds for the finite-time survival probability of the stochastic work extracted in steady-state heat engines. We also find estimates for the time-dependent thresholds that the stochastic work does not surpass with a prescribed pr
The persistence behavior for fluctuating steps on the $Si(111)$ $(sqrt3 times sqrt3)R30^{0} - Al$ surface was determined by analyzing time-dependent STM images for temperatures between 770 and 970K. The measured persistence probability follows a powe
A linear stability analysis of the hydrodynamic equations of a model for confined quasi-two-dimensional granular gases is carried out. The stability analysis is performed around the homogeneous steady state (HSS) reached eventually by the system afte