ﻻ يوجد ملخص باللغة العربية
We extend previous real-space Hartree-Fock studies of static stripe stability to determine the phase diagram of the Hubbard model with anisotropic nearest-neighbor hopping t, by varying the on-site Coulomb repulsion U and investigating locally stable structures for representative hole doping levels x=1/8 and x=1/6. We also report the changes in stability of these stripes in the extended Hubbard model due to next-neighbor hopping t and to a nearest-neighbor Coulomb interaction V.
Using a self-consistent Hartree-Fock approximation we investigate the relative stability of various stripe phases in the extended $t$-$t$-$U$ Hubbard model. One finds that a negative ratio of next- to nearest-neighbor hopping $t/t<0$ expells holes fr
The interplay between thermal and quantum fluctuations controls the competition between phases of matter in strongly correlated electron systems. We study finite-temperature properties of the strongly coupled two-dimensional doped Hubbard model using
The dualism between superconductivity and charge/spin modulations (the so-called stripes) dominates the phase diagram of many strongly-correlated systems. A prominent example is given by the Hubbard model, where these phases compete and possibly coex
The high-temperature superconducting cuprates are governed by intertwined spin, charge, and superconducting orders. While various state-of-the-art numerical methods have demonstrated that these phases also manifest themselves in doped Hubbard models,
We discuss the phase diagram of the extended Hubbard model with both attractive and repulsive local and nonlocal interactions. The extended dynamical mean-field theory (EDMFT) and the dual boson method (DB) are compared. The latter contains additiona