ترغب بنشر مسار تعليمي؟ اضغط هنا

Backbone-induced semiconducting behavior in short DNA wires

371   0   0.0 ( 0 )
 نشر من قبل Gianaurelio Cuniberti
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a model Hamiltonian for describing charge transport through short homogeneous double stranded DNA molecules. We show that the hybridization of the overlapping pi orbitals in the base-pair stack coupled to the backbone is sufficient to predict the existence of a gap in the nonequilibrium current-voltage characteristics with a minimal number of parameters. Our results are in a good agreement with the recent finding of semiconducting behavior in short poly(G)-poly(C) DNA oligomers. In particular, our model provides a correct description of the molecular resonances which determine the quasi-linear part of the current out of the gap region.



قيم البحث

اقرأ أيضاً

We study the phase diagram and transport properties of arbitrarily doped quantum wires functionalized by magnetic adatoms. The appropriate theoretical model for these systems is a dense one-dimensional Kondo Lattice (KL) which consists of itinerant e lectrons interacting with localized quantum magnetic moments. We discover the novel phase of the locally helical metal where transport is protected from a destructive influence of material imperfections. Paradoxically, such a protection emerges without a need of the global helicity, which is inherent in all previously studied helical systems and requires breaking the spin-rotation symmetry. We explain the physics of this protection of the new type, find conditions, under which it emerges, and discuss possible experimental tests. Our results pave the way to the straightforward realization of the protected ballistic transport in quantum wires made of various materials.
Magnetoconductance (MC) in a parallel magnetic field B has been measured in a two-dimensional electron system in Si, in the regime where the conductivity decreases as sigma (n_s,T,B=0)=sigma (n_s,T=0) + A(n_s)T^2 (n_s -- carrier density) to a non-zer o value as temperature T->0. Very near the B=0 metal-insulator transition, there is a large initial drop in sigma with increasing B, followed by a much weaker sigma (B). At higher n_s, the initial drop of MC is less pronounced.
Our understanding of the elasticity and rheology of disordered materials, such as granular piles, foams, emulsions or dense suspensions relies on improving experimental tools to characterize their behaviour at the particle scale. While 2D observation s are now routinely carried out in laboratories, 3D measurements remain a challenge. In this paper, we use a simple model system, a packing of soft elastic spheres, to illustrate the capability of X-ray microtomography to characterise the internal structure and local behaviour of granular systems. Image analysis techniques can resolve grain positions, shapes and contact areas; this is used to investigate the materials microstructure and its evolution upon strain. In addition to morphological measurements, we develop a technique to quantify contact forces and estimate the internal stress tensor. As will be illustrated in this paper, this opens the door to a broad array of static and dynamical measurements in 3D disordered systems
Hydrated granular packings often crack into discrete clusters of grains when dried. Despite its ubiquity, accurate prediction of cracking remains elusive. Here, we elucidate the previously overlooked role of individual grain shrinkage---a feature com mon to many materials---in determining crack patterning using both experiments and simulations. By extending the classical Griffith crack theory, we obtain a scaling law that quantifies how cluster size depends on the interplay between grain shrinkage, stiffness, and size---applicable to a diverse array of shrinkable, granular packings.
Motivated by a freely suspended graphene and polymerized membranes in soft and biological matter we present a detailed study of a tensionless elastic sheet in the presence of thermal fluctuations and quenched disorder. The manuscript is based on an e xtensive draft dating back to 1993, that was circulated privately. It presents the general theoretical framework and calculational details of numerous results, partial forms of which have been published in brief Letters (Le Doussal and Radzihovsky 1992). The experimental realization of atom-thin graphene sheets has driven a resurgence in this fascinating subject, making our dated predictions and their detailed derivations timely. To this end we analyze the statistical mechanics of a generalized D-dimensional elastic membrane embedded in d dimensions using a self-consistent screening approximation (SCSA), that has proved to be unprecedentedly accurate in this system, exact in three complementary limits: d --> infinity, D --> 4, and D=d. Focusing on the critical flat phase, for a homogeneous two-dimensional membrane embedded in three dimensions, we predict its universal length-scale dependent roughness, elastic moduli exponents, and a universal negative Poisson ratio of -1/3. We also extend these results to short- and long-range correlated random heterogeneity, predicting a variety of glassy wrinkled membrane states. Finally, we also predict and analyze a continuous crumpling transition in a phantom elastic sheet. We hope that this detailed presentation of the SCSA theory will be useful for further theoretical developments and corresponding experimental investigations on freely suspended graphene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا