ﻻ يوجد ملخص باللغة العربية
Motivated by a freely suspended graphene and polymerized membranes in soft and biological matter we present a detailed study of a tensionless elastic sheet in the presence of thermal fluctuations and quenched disorder. The manuscript is based on an extensive draft dating back to 1993, that was circulated privately. It presents the general theoretical framework and calculational details of numerous results, partial forms of which have been published in brief Letters (Le Doussal and Radzihovsky 1992). The experimental realization of atom-thin graphene sheets has driven a resurgence in this fascinating subject, making our dated predictions and their detailed derivations timely. To this end we analyze the statistical mechanics of a generalized D-dimensional elastic membrane embedded in d dimensions using a self-consistent screening approximation (SCSA), that has proved to be unprecedentedly accurate in this system, exact in three complementary limits: d --> infinity, D --> 4, and D=d. Focusing on the critical flat phase, for a homogeneous two-dimensional membrane embedded in three dimensions, we predict its universal length-scale dependent roughness, elastic moduli exponents, and a universal negative Poisson ratio of -1/3. We also extend these results to short- and long-range correlated random heterogeneity, predicting a variety of glassy wrinkled membrane states. Finally, we also predict and analyze a continuous crumpling transition in a phantom elastic sheet. We hope that this detailed presentation of the SCSA theory will be useful for further theoretical developments and corresponding experimental investigations on freely suspended graphene.
We study the shape, elasticity and fluctuations of the recently predicted (cond-mat/9510172) and subsequently observed (in numerical simulations) (cond-mat/9705059) tubule phase of anisotropic membranes, as well as the phase transitions into and out
Our understanding of the elasticity and rheology of disordered materials, such as granular piles, foams, emulsions or dense suspensions relies on improving experimental tools to characterize their behaviour at the particle scale. While 2D observation
Random (disordered) components in the surface anchoring of the smectic-A liquid crystalline film in general modify the thermal pseudo-Casimir interaction. Anchoring disorder of the quenched type is in general decoupled from the thermal pseudo-Casimir
We elucidate the effects of defect disorder and $e$-$e$ interaction on the spectral density of the defect states emerging in the Mott-Hubbard gap of doped transition-metal oxides, such as Y$_{1-x}$Ca$_{x}$VO$_{3}$. A soft gap of kinetic origin develo
The simultaneous interplay of strong electron-electron correlations, topological zero-energy states, and disorder is yet an unexplored territory but of immense interest due to their inevitable presence in many materials. Copper oxide high-temperature