ﻻ يوجد ملخص باللغة العربية
We report on the optical manipulation of the electron spin relaxation time in a GaAs based heterostructure. Experimental and theoretical study shows that the average electron spin relaxes through hyperfine interaction with the lattice nuclei, and that the rate can be controlled by the electron-electron interactions. This time has been changed from 300 ns down to 5 ns by variation of the laser frequency. This modification originates in the optically induced depletion of n-GaAs layer.
We observe millisecond spin-flip relaxation times of donor-bound electrons in high-purity n-GaAs . This is three orders of magnitude larger than previously reported lifetimes in n-GaAs . Spin-flip times are measured as a function of magnetic field an
The spin relaxation time of electrons in GaAs and GaN are determined with a model that includes momentum scattering by phonons and ionized impurities, and spin scattering by the Elliot-Yafet, Dyakonov-Perel, and Bir-Aronov-Pikus mechanisms. Accurate
The mechanisms for spin relaxation in semiconductors are reviewed, and the mechanism prevalent in p-doped semiconductors, namely spin relaxation due to the electron-hole exchange interaction, is presented in some depth. It is shown that the solution
In a recent publication, Pfeffer and Zawadzki [cond-mat/0607150; Phys. Rev. B 74, 115309 (2006)] attempted a calculation of electron g factor in III-V heterostructures. The authors emphasize that their outcome is in strong discrepancy with our origin
We report experimental results of the effect of Ka-band microwave on the spin dynamics of electrons in a 2D electron system in a GaAs/Al0.35Ga0.65As heterostructure, via time-resolved Kerr rotation measurements. While the microwave reduces the transv