ترغب بنشر مسار تعليمي؟ اضغط هنا

Devils staircase in kinetically limited growth of Ising model

87   0   0.0 ( 0 )
 نشر من قبل Graeme J. Ackland
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G.J. Ackland




اسأل ChatGPT حول البحث

The devils staircase is a term used to describe surface or an equilibrium phase diagram in which various ordered facets or phases are infinitely closely packed as a function of some model parameter. A classic example is a 1-D Ising model [bak] wherein long-range and short range forces compete, and the periodicity of the gaps between minority species covers all rational values. In many physical cases, crystal growth proceeds by adding surface layers which have the lowest energy, but are then frozen in place. The emerging layered structure is not the thermodynamic ground state, but is uniquely defined by the growth kinetics. It is shown that for such a system, the grown structure tends to the equilibrium ground state via a devils staircase traversing an infinity of intermediate phases. It would be extremely difficult to deduce the simple growth law based on measurement made on such an grown structure.

قيم البحث

اقرأ أيضاً

In this work, we study the crystalline nuclei growth in glassy systems focusing primarily on the early stages of the process, at which the size of a growing nucleus is still comparable with the critical size. On the basis of molecular dynamics simula tion results for two crystallizing glassy systems, we evaluate the growth laws of the crystalline nuclei and the parameters of the growth kinetics at the temperatures corresponding to deep supercoolings; herein, the statistical treatment of the simulation results is done within the mean-first-passage-time method. It is found for the considered systems at different temperatures that the crystal growth laws rescaled onto the waiting times of the critically-sized nucleus follow the unified dependence, that can simplify significantly theoretical description of the post-nucleation growth of crystalline nuclei. The evaluated size-dependent growth rates are characterized by transition to the steady-state growth regime, which depends on the temperature and occurs in the glassy systems when the size of a growing nucleus becomes two-three times larger than a critical size. It is suggested to consider the temperature dependencies of the crystal growth rate characteristics by using the reduced temperature scale $widetilde{T}$. Thus, it is revealed that the scaled values of the crystal growth rate characteristics (namely, the steady-state growth rate and the attachment rate for the critically-sized nucleus) as functions of the reduced temperature $widetilde{T}$ for glassy systems follow the unified power-law dependencies. This finding is supported by available simulation results; the correspondence with the experimental data for the crystal growth rate in glassy systems at the temperatures near the glass transition is also discussed.
265 - K. -W. Chen , Y. Lai , Y. -C. Chiu 2017
The temperature ($T$) - magnetic field ($H$) phase diagram for the tetragonal layered compound CeSbSe, is determined from magnetization, specific heat, and electrical resistivity measurements. This system exhibits complex magnetic ordering at $T_{rm{ M}}$ $=$ 3 K and the application of a magnetic field results in a cascade of magnetically ordered states for $H$ $lesssim$ 1.8 T which are characterized by fractional integer size steps: i.e., a possible Devils staircase is observed. Electrical transport measurements show a weak temperature dependence and large residual resistivity which suggest a small charge carrier density and strong scattering from the $f$-moments. These features reveal Kondo lattice behavior where the $f$-moments are incompletely screened, resulting in a fine balanced magnetic interaction between different Ce neighbors that is mediated by the RKKY interaction. This produces the nearly degenerate magnetically ordered states that are accessed under an applied magnetic field.
Quasiperiodic modulation can prevent isolated quantum systems from equilibrating by localizing their degrees of freedom. In this article, we show that such systems can exhibit dynamically stable long-range orders forbidden in equilibrium. Specificall y, we show that the interplay of symmetry breaking and localization in the quasiperiodic quantum Ising chain produces a emph{quasiperiodic Ising glass} stable at all energy densities. The glass order parameter vanishes with an essential singularity at the melting transition with no signatures in the equilibrium properties. The zero temperature phase diagram is also surprisingly rich, consisting of paramagnetic, ferromagnetic and quasiperiodically alternating ground state phases with extended, localized and critically delocalized low energy excitations. The system exhibits an unusual quantum Ising transition whose properties are intermediate between those of the clean and infinite randomness Ising transitions. Many of these results follow from a geometric generalization of the Aubry-Andre duality which we develop. The quasiperiodic Ising glass may be realized in near term quantum optical experiments.
The chiral clock spin-glass model with q=5 states, with both competing ferromagnetic-antiferromagnetic and left-right chiral frustrations, is studied in d=3 spatial dimensions by renormalization-group theory. The global phase diagram is calculated in temperature, antiferromagnetic bond concentration p, random chirality strength, and right-chirality concentration c. The system has a ferromagnetic phase, a multitude of different chiral phases, a chiral spin-glass phase, and a critical (algebraically) ordered phase. The ferromagnetic and chiral phases accumulate at the disordered phase boundary and form a spectrum of devils staircases, where different ordered phases characteristically intercede at all scales of phase-diagram space. Shallow and deep reentrances of the disordered phase, bordered by fragments of regular and temperature-inverted devils staircases, are seen. The extremely rich phase diagrams are presented as continuously and qualitatively changing videos.
The THz spectrum of density fluctuations, $S(Q, omega)$, of vitreous GeO$_2$ at ambient temperature was measured by inelastic x-ray scattering from ambient pressure up to pressures well beyond that of the known $alpha$-quartz to rutile polyamorphic ( PA) transition. We observe significant differences in the spectral shape measured below and above the PA transition, in particular, in the 30-80 meV range. Guided by first-principle lattice dynamics calculations, we interpret the changes in the phonon dispersion as the evolution from a quartz-like to a rutile-like coordination. Notably, such a crossover is accompanied by a cusp-like behavior in the pressure dependence of the elastic response of the system. Overall, the presented results highlight the complex fingerprint of PA phenomena on the high-frequency phonon dispersion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا