ﻻ يوجد ملخص باللغة العربية
The chiral clock spin-glass model with q=5 states, with both competing ferromagnetic-antiferromagnetic and left-right chiral frustrations, is studied in d=3 spatial dimensions by renormalization-group theory. The global phase diagram is calculated in temperature, antiferromagnetic bond concentration p, random chirality strength, and right-chirality concentration c. The system has a ferromagnetic phase, a multitude of different chiral phases, a chiral spin-glass phase, and a critical (algebraically) ordered phase. The ferromagnetic and chiral phases accumulate at the disordered phase boundary and form a spectrum of devils staircases, where different ordered phases characteristically intercede at all scales of phase-diagram space. Shallow and deep reentrances of the disordered phase, bordered by fragments of regular and temperature-inverted devils staircases, are seen. The extremely rich phase diagrams are presented as continuously and qualitatively changing videos.
Spin glass (SG) is a typical magnetic system with frozen random spin orientation at low temperatures. The system exhibits rich physical properties, such as infinite number of ground states, memory effect and aging phenomena. There are two main ingred
Across many scientific and engineering disciplines, it is important to consider how much the output of a given system changes due to perturbations of the input. Here, we study the robustness of the ground states of $pm J$ spin glasses on random graph
The devils staircase is a term used to describe surface or an equilibrium phase diagram in which various ordered facets or phases are infinitely closely packed as a function of some model parameter. A classic example is a 1-D Ising model [bak] wherei
All higher-spin s >= 1/2 Ising spin glasses are studied by renormalization-group theory in spatial dimension d=3. The s-sequence of global phase diagrams, the chaos Lyapunov exponent, and the spin-glass runaway exponent are calculated. It is found th
Spin glasses are a longstanding model for the sluggish dynamics that appears at the glass transition. However, spin glasses differ from structural glasses for a crucial feature: they enjoy a time reversal symmetry. This symmetry can be broken by appl