ترغب بنشر مسار تعليمي؟ اضغط هنا

Signature of a polyamorphic transition in the THz spectrum of vitreous GeO2

70   0   0.0 ( 0 )
 نشر من قبل Alessandro Cunsolo
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The THz spectrum of density fluctuations, $S(Q, omega)$, of vitreous GeO$_2$ at ambient temperature was measured by inelastic x-ray scattering from ambient pressure up to pressures well beyond that of the known $alpha$-quartz to rutile polyamorphic (PA) transition. We observe significant differences in the spectral shape measured below and above the PA transition, in particular, in the 30-80 meV range. Guided by first-principle lattice dynamics calculations, we interpret the changes in the phonon dispersion as the evolution from a quartz-like to a rutile-like coordination. Notably, such a crossover is accompanied by a cusp-like behavior in the pressure dependence of the elastic response of the system. Overall, the presented results highlight the complex fingerprint of PA phenomena on the high-frequency phonon dispersion.



قيم البحث

اقرأ أيضاً

We computer model a free-standing vitreous silica bilayer which has recently been synthesized and characterized experimentally in landmark work. Here we model the bilayer using a computer assembly procedure that starts from a single layer of amorphou s graphene, generated using a bond switching algorithm from an initially crystalline graphene structure. Next each bond is decorated with an oxygen atom and the carbon atoms are relabeled as silicon. This monolayer can be now thought of as a two dimensional network of corner sharing triangles. Next each triangle is made into a tetrahedron, by raising the silicon atom above each triangle and adding an additional singly coordinated oxygen atom at the apex. The final step is to mirror reflect this layer to form a second layer and then attach the two layers together to form the bilayer. We show that this vitreous silica bilayer has the additional macroscopic degrees of freedom to easily form a network of identical corner sharing tetrahedra if there is a symmetry plane through the center of the bilayer going through the layer of oxygen ions that join the upper and lower layers. This has the consequence that the upper rings lie exactly above the lower rings, which are tilted in general. The assumption of a network of perfect corner sharing tetrahedra leads to a range of possible densities that we have previously characterized in three dimensional zeolites as a flexibility window. Finally, using a realistic potential, we have relaxed the bilayer to determine the density, and other structural characteristics such as the Si-Si pair distribution functions and the Si-O-Si bond angle distribution, which are compared to the experimental results obtained by direct imaging.
Cryogenic rejuvenation in metallic glasses reported in Ketov et al s experiment (Nature(2015)524,200) has attracted much attention, both in experiments and numerical studies. The atomic mechanism of rejuvenation has been conjectured to be related t o the heterogeneity of the glassy state, but the quantitative evidence is still elusive. Here we use molecular dynamics simulations of a model metallic glass to investigate the heterogeneity in the local thermal expansion. We then combine the resulting spatial distribution of thermal expansion with a continuum mechanics calculation to infer the internal stresses caused by a thermal cycle. Comparing the internal stress with the local yield stress, we prove that the heterogeneity in thermomechanical response has the potential to trigger local shear transformations, and therefore to induce rejuvenation during a cryogenic thermal cycling.
In this work, we study the crystalline nuclei growth in glassy systems focusing primarily on the early stages of the process, at which the size of a growing nucleus is still comparable with the critical size. On the basis of molecular dynamics simula tion results for two crystallizing glassy systems, we evaluate the growth laws of the crystalline nuclei and the parameters of the growth kinetics at the temperatures corresponding to deep supercoolings; herein, the statistical treatment of the simulation results is done within the mean-first-passage-time method. It is found for the considered systems at different temperatures that the crystal growth laws rescaled onto the waiting times of the critically-sized nucleus follow the unified dependence, that can simplify significantly theoretical description of the post-nucleation growth of crystalline nuclei. The evaluated size-dependent growth rates are characterized by transition to the steady-state growth regime, which depends on the temperature and occurs in the glassy systems when the size of a growing nucleus becomes two-three times larger than a critical size. It is suggested to consider the temperature dependencies of the crystal growth rate characteristics by using the reduced temperature scale $widetilde{T}$. Thus, it is revealed that the scaled values of the crystal growth rate characteristics (namely, the steady-state growth rate and the attachment rate for the critically-sized nucleus) as functions of the reduced temperature $widetilde{T}$ for glassy systems follow the unified power-law dependencies. This finding is supported by available simulation results; the correspondence with the experimental data for the crystal growth rate in glassy systems at the temperatures near the glass transition is also discussed.
76 - G.Simon , B. Hehlen , E. Courtens 2005
Hyper-Raman scattering spectra of vitreous B$_2$O$_3$ are reported and compared to Raman scattering results. The main features are indexed in terms of vibrations of structural units. Particular attention is given to the low frequency boson peak which is shown to relate to out-of-plane librations of B$_3$O$_3$ boroxol rings and BO$_3$ triangles. Its hyper-Raman strength is comparable to that of cooperative polar modes. It points to a sizeable coherent enhancement of the hyper-Raman signal compared to the Raman one. This is explained by the symmetry of the structural units.
Certain density correlators, measurable via various experimental techniques, are studied in the context of the vulcanization transition. It is shown that these correlators contain essential information about both the vulcanization transition and the emergent amorphous solid state. Contact is made with various physical ingredients that have featured in experimental studies of amorphous colloidal and gel systems and in theoretical studies of the glassy state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا