ﻻ يوجد ملخص باللغة العربية
The spin-dependence of the interface resistance between ferromagnetic Fe and InAs is calculated from first-principles for specular and disordered (001) interfaces. Because of the symmetry mismatch in the minority-spin channel, the specular interface acts as an efficient spin filter with a transmitted current polarisation between 98 an 89%. The resistance of a specular interface in the diffusive regime is comparable to the resistance of a few microns of bulk InAs. Symmetry-breaking arising from interface disorder reduces the spin asymmetry substantially and we conclude that efficient spin injection from Fe into InAs can only be realized using high quality epitaxial interfaces.
Electron spin polarizations of 32% are obtained in a GaAs quantum well via electrical injection through a reverse-biased Fe/AlGaAs Schottky contact. An analysis of the transport data using the Rowell criteria demonstrates that single step tunneling i
We have studied hyperfine interactions between spin-polarized electrons and lattice nuclei in Al_0.1Ga_0.9As/GaAs quantum well (QW) heterostructures. The spin-polarized electrons are electrically injected into the semiconductor heterostructure from a
We report direct experimental evidence showing induced magnetic moments on Ge at the interface in an Fe/Ge system. Details of the x-ray magnetic circular dichroism and resonant magnetic scattering at the Ge L edge demonstrate the presence of spin-pol
Whereas spintronics brings the spin degree of freedom to electronic devices, molecular/organic electronics adds the opportunity to play with the chemical versatility. Here we show how, as a contender to commonly used inorganic materials, organic/mole
Ferromagnetic metal-organic semiconductor (FM-OSC) hybrid interfaces have shown to play an important role for spin injection in organic spintronics. Here, 11,11,12,12-tetracyanonaptho-2,6-quinodimethane (TNAP) is introduced as an interfacial layer in